Những câu hỏi liên quan
DT
Xem chi tiết
TQ
15 tháng 1 2020 lúc 20:21

a,Giả sử tích 2 số nguyên dương là 1 số chính phương

Gọi 2 số đó là \(x;x+1\left(x\inℕ^∗\right)\)

ta có:\(x\left(x+1\right)=a^2\left(a\inℤ|a\ne0\right)\)

Mà x và x+1 nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x+1=c^2\Rightarrow b^2+1=c^2\end{cases}}\)

\(\Rightarrow1=c^2-b^2=\left(c-b\right)\left(c+b\right)\Rightarrow c-b=c+b\Rightarrow b=0\Rightarrow x=0\)(Trái với giả thuyết)

Vậy điều giả sử là sai,do đó tích 2 số nguyên dương ko là số chính phương(DPCM)

Bình luận (0)
 Khách vãng lai đã xóa
TQ
15 tháng 1 2020 lúc 20:43

Giả sử có số thỏa mãn đề bài

Gọi 3 số đó là\(x-1;x;x+1\left(x\inℕ|x>1\right)\)

Ta có:\(\left(x-1\right)x\left(x+1\right)=a^2\)(điều kiện như câu a)

\(\Rightarrow\left(x-1\right)\left(x+1\right)x=a^2\Rightarrow\left(x^2-1\right)x=a^2\)

Gọi d là ước chung của x và\(x^2-1\)

\(\Rightarrow\hept{\begin{cases}x^2-1⋮d\\x⋮d\Rightarrow x^2⋮d\end{cases}}\)

\(\Rightarrow x^2-\left(x^2-1\right)=1⋮d\Rightarrow d=1\)

Do đó x và\(x^2-1\)nguyên tố cùng nhau

\(\Rightarrow\hept{\begin{cases}x=b^2\\x^2-1=\left(b^2\right)^2-1=c^2\end{cases}}\)

\(\Rightarrow\left(b^2\right)^2-1=c^2\Rightarrow\left(b^2\right)^2-c^2=1\Rightarrow\left(b^2-c\right)\left(b^2+c\right)=1\Rightarrow b^2-c=b^2+c\Leftrightarrow c=0\)

\(\Rightarrow\left(b^2\right)^2-1=0\Rightarrow\left(b^2\right)^2=1\Rightarrow b^2=1\Rightarrow x=1\)(Trái với giả thuyết)

Vậy điền giả sử là sai,do đó ko có số nguyên dương thỏa mãn đề bài(ĐPCM)

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
TA
Xem chi tiết
NH
1 tháng 1 2016 lúc 14:35

Gọi 4 số nguyên dương liên tiếp là n, n+1, n+2, n+3.

Đặt S=n(n+1)(n+2)(n+3)

=n(n+3)(n+1)(n+2)=(n^2+3n)(n^2+3n+2)=(n^2+3n)^2 + 2(n^2+3n) +1 -1

=(n^2 +3n +1)^2 - 1 

Sử dụng tính chất kẹp giữa của số chính phương:

(n^2 + 3n)^2 < (n^2 + 3n + 1)^2 - 1 < (n^2 + 3n +1)

Trên đây là 2 số chính phương liên tiếp nên S không là số chính phương.

Bình luận (0)
NH
Xem chi tiết
PT
28 tháng 9 2017 lúc 8:18

Gọi tích 4 số nguyên dương liên tiếp đó là A=(a-1)a(a+1)(a+2)

A = [(a-1)(a+2)][a(a+1)] = (a^2+2a-a-2)(a^2+a) = (a^2+a-2)(a^2+a)

Đặt a^2+a-1=x; thế thì A=(x-1)(x+1)=x^2-1 không phải là số chính phương

Bình luận (0)
NN
Xem chi tiết
DT
11 tháng 7 2015 lúc 7:29

Dây là 4 số  nguyên dương liên tiếp, còn phần  kia tương tự nha

Đặt A = n.(n+1)(n+2)(n+3) với n ≥ 1; n € N 
A = [n.(n+3)].[(n+1)(n+2)] = (n² + 3n).(n²+3n+2) 
= t(t+2) (với t = n² + 3n ≥ 4 ; t € N) 
Ta thấy 
t² < A = t² + 2t < t² + 2t + 1 = (t+1)² 
=> A nằm giữa 2 số chính phương liên tiếp 
=> A không phải là số chính phương (đpcm)

Bình luận (0)
PM
11 tháng 7 2015 lúc 7:21

bạn ơi, mấy bn hok giỏi ko onl ùi

Bình luận (0)
SB
11 tháng 7 2015 lúc 7:26

chắc tại mưa nên mấy bn ấy k onl

Bình luận (0)
QN
Xem chi tiết
DH
23 tháng 7 2018 lúc 15:33

a) Gọi 4 số tự nhiên liên tiếp đó là: n ; n+1; n+2; n+3 (n thuộc N)

Ta có: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1=n\left(n+3\right)\left(n+1\right)\left(n+2\right)+1\)

    \(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\left(\cdot\right)\)

Đặt n2 + 3n = t (t thuộc N) thì \(\left(\cdot\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(n^2+3n+1\right)^2\)

Vì n thuộc N nên (n2+3n+1) thuộc N

=> Vậy n(n+1)(n+2)(n+3)+1 là 1 số chính phương

Bình luận (0)
QN
24 tháng 7 2018 lúc 8:48

tính giá trị của biểu thức 

a, 2x^2(ax^2+2bx+4c)=6x^4-20x^3-8x^2 với mọi x

b, (ax+b)(x^2-cx+2)=x^3+x^2-2 với mọi x

Bình luận (0)
H24
Xem chi tiết
TL
29 tháng 8 2017 lúc 20:16

Không Thể  được . 3 số nguyên dương có tích ko phải là lập phương 

Bình luận (0)
TD
29 tháng 8 2017 lúc 20:17

Chứng minh tích 3 số nguyên dương liên tiếp không là số chính phương.

Giải như sau:
$a(a+1)(a+2)=x^2$ với $a>0,x>0$
TH1: $a$ lẻ suy ra $gcd(a,a+1)=1,gcd(a+1,a+2)=1,gcd(a,a+2)=1$
Do đó $a=m^2,a+1=n^2,a+2=p^2$ với $mnp=x$
Suy ra $n^2-m^2=1 \Rightarrow (n-m)(n+m)=1 \Rightarrow n=1,m=0$ suy ra $a=0$ loại do $a>0$
TH2: $a$ chẵn suy ra $a=2t$ do đó $4t(2t+1)(t+1)=x^2 \Rightarrow x=2x'$
Suy ra $t(2t+1)(t+1)=x'^2$ lúc này $gcd(t,2t+1)=gcd(t,t+1)=gcd(2t+1,t+1)=1$
Suy ra $t=m^2,2t+1=n^2,t+1=p^2,mnp=x' \Rightarrow p^2-m^2=1$ cũng loại vì khi đó $t=0$ thì $a=0$ loại
Đây chính là $đpcm$ 

Bình luận (0)
HL
Xem chi tiết
HR
3 tháng 11 2016 lúc 13:01

Gọi 4 số tự nhiên liên tiếp là: a;a+1;a+2;a+3(a thuộc N)

Ta có: a(a+1)(a+2)(a+3)+1=a(a+3)(a+1)(a+2)=\(\left(a^2+3a\right)\left(a^2+3a+2\right)+1\)

Đặt A=\(a^2+3a\)thì \(A\left(A+2\right)+1=A^2+2A+1=\left(A+1\right)^2\)

Vậy tích 4 số tự nhiên liên tiếp cộng 1 là số chính phương 

Bình luận (0)
LA
Xem chi tiết
PQ
2 tháng 10 2021 lúc 21:28
Gọi x;x+1;x+2;x+3 là 4 số nguyên liên tiếp Ta có x(x+1)(x+2)(x+3)+1 = (x^2+3x)(x^2+3x+2)+1 = (x^2+3x+1)^2-1^2+1 = (x^2+3x+1)^2 (đpcm)
Bình luận (0)
 Khách vãng lai đã xóa

Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 . Khi đó ta có: Tích của 4 số tự nhiên liên tiếp là: A = n(n + 1)(n + 2)(n + 3)+ 1 A= (n2 + 3n)(n2 + 3n + 2) + 1 = (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2 Vì n là số tự nhiên nên (n2 + 3n + 1)2 là một số chính phương. Vậy n(n + 1)(n + 2)(n + 3) là một số chính phương.

 

Bình luận (0)
 Khách vãng lai đã xóa
CL
2 tháng 10 2021 lúc 21:29

Gọi 4 số tự nhiên liên tiếp là n , n + 1 , n + 2 , n + 3 . Khi đó ta có:

Tích của 4 số tự nhiên liên tiếp là:

A = n(n + 1)(n + 2)(n + 3)+ 1

A= (n2 + 3n)(n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1 = (n2 + 3n + 1)2

Vì n là số tự nhiên nên (n2 + 3n + 1)2 là một số chính phương.

Vậy n(n + 1)(n + 2)(n + 3) là một số chính phương.

 
Bình luận (0)
 Khách vãng lai đã xóa