tìm các số nguyên không âm x,y biết x^2 = 3^y + 35
Tìm các số nguyên không âm x, y sao cho \(x^2+3^y=35\)
Vì \(x^2+3^y=35\)nên \(3^y< 35\)
Vì \(3^3=27\),\(3^4=108>35\)
\(\Rightarrow y\in(1;2;3)\)
Nếu y=1 thì\(x^2+3^1=35\Rightarrow x^2=35-3=32\)
Nhưng không có bình phương nào bằng 32 \(\Rightarrow\)\(y\ne1\)
Nếu y=2 thì\(x^2+3^2=35\Rightarrow x^2=35-9=26\)
Nhưng không có bình phương nào bằng 26 \(\Rightarrow y\ne2\)
Nếu y=3 thì\(x^2+3^3=35\Rightarrow x^2=35-27=8\)
Nhưng không có bình phương nào bằng 8 \(\Rightarrow y\ne3\)
Vậy không có x,y để thỏa mãn điều kiện của đề bài.
để mị nói cho mà nge
Tìm 2 số nguyên không âm x,y thỏa mãn : x2=3y+35
Giúp mik với , mik đang cần gấp
\(x^2=3^y+35\)
Với \(y=0\) ta có: \(x^2=36\Rightarrow x=6\left(x\ge0\right)\)
Với \(y>0\) ta có: \(3^y⋮3\Rightarrow3^y+33+2\) chia 3 dư 2
\(\Rightarrow x^2=3k+2\).Mà số chính phg ko có dạng 3k+2
Vậy pt có nghiệm (x;y)=(6;0)
Tìm các cặp số nguyên không âm (x;y) thỏa mãn x - y = x^2 + xy + y^2
Giải thử nha , đừng làm theo mình!
Vì x ; y là các số nguyên không âm
\(\Rightarrow x\ge x-y=x^2+y^2+xy\ge2xy+xy=3xy\)
Nếu x = 0 thì - y = y2 => y = 0Nếu x > 0 kết hợp với x ≥ 3xy ta được 1 ≥ 3y , từ đó y = 0 => x = x2 => x = 1Vậy phương trình có nghiệm ( x ; y ) là ( 0 ; 0 ) và ( 1 ; 0 )
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
Tìm các số nguyên x và y , biết : 3/x = y/35= -36/84
help me
3/x = y/35= -36/84
⇒ y = \(\dfrac{35.-36}{84}\) = - 15
⇒ x = \(\dfrac{3.35}{-15}\) = - 7
Vậy x = - 7 và y = -15
Tìm các số nguyên x và y biết 3/x=y/35=-36/84
Tìm tất cả các cặp số nguyên không âm thoả mãn: x-y=x2+xy+y2
Ta có: \(x-y=x^2+xy+y^2\Rightarrow x^2+\left(y-1\right)x+\left(y^2+y\right)=0\)
Coi phương trình trên là phương trình bậc hai theo ẩn x thì \(\Delta=\left(y-1\right)^2-4\left(y^2+y\right)=-3y^2-6y+1\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-3y^2-6y+1\ge0\Rightarrow\frac{-3-2\sqrt{3}}{3}\le y\le\frac{-3+2\sqrt{3}}{3}\)
Mà y là số nguyên không âm nên y = 0
Thay y = 0 vào phương trình, ta được: \(x=x^2\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
Vậy (x, y) = { (0; 0); (1; 0) }
Bài 1: Tìm x,y là số nguyên biết:
8(x+1)2 +y2 = 35
Bài 2: Tìm x,y là số nguyên biết:
7(x-4)2 + |y-3| = 30
Cảm ơn các bạn trước nha!
\(8\left(x+1\right)^2+y^2=35\)(1)
Dễ suy ra được \(y^2\)lẻ\(\Leftrightarrow\)y lẻ
Từ (1) suy ra \(y^2\le35\Leftrightarrow-6< y< 6\)
Từ đó suy ra \(y\in\left\{\pm5;\pm3;\pm1\right\}\)
*Nếu \(y=\pm1\)\(\Rightarrow8\left(x+1\right)^2=34\left(L\right)\)
*Nếu \(y=\pm3\Rightarrow8\left(x+1\right)^2=26\left(L\right)\)
*Nếu \(y=\pm5\Rightarrow8\left(x+1\right)^2=10\left(L\right)\)
Vậy không có x,y cần tìm
tìm các số nguyên x,y sao cho
a,2x+xy-3y=18
b,tìm các số nguyên x biết tích (x^2-5).(x^2-25) là sô nguyên âm
Ta có : 2x + xy - 3y = 18
=> x(y + 2) - 3y = 18
=> x(y + 2) - 3y - 6 = 18 - 6
=> x(y + 2) - 3(x + 2) = 12
=> (x - 3)(y + 2) = 12
Vì \(x;y\inℤ\Rightarrow\hept{\begin{cases}x-3\inℤ\\y+2\inℤ\end{cases}}\)
Lại có : 12 = 1.12 = 3.4 = 2.6 = (-1).(-12) = (-3).(-4) = (-2).(-6)
Lập bảng xét 12 trường hợp
x - 3 | 1 | 12 | -1 | -12 | 3 | 4 | -3 | -4 | 2 | 6 | -2 | -6 |
y + 2 | 12 | 1 | -12 | -1 | 4 | 3 | -4 | -3 | 6 | 2 | -6 | -2 |
x | 4 | 15 | 2 | -9 | 6 | 7 | 0 | -1 | 5 | 9 | 1 | -3 |
y | 10 | -1 | -14 | -3 | 2 | 1 | -6 | -5 | 4 | 0 | -8 | -4 |
Vậy các cặp số (x;y) nguyên thỏa mãn là : (4 ; 10) ; (15 ; - 1) ; (2 ; -14) ; (-9 ; -3) ; (6 ; 2) ; (7 ; 1) ; (0 ; -6) ; (-1 ' 5) ; (5 ; 4) ; (9 ; 0) ;
(1 ; -8) ; (-3 ; -4)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
TH1 : \(\hept{\begin{cases}x^2-5>0\\x^2-25< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 25\end{cases}}\Rightarrow5< x^2< 25\Rightarrow x^2\in\left\{9;16\right\}}\)(vì x là số nguyên)
=> \(x\in\left\{\pm3;\pm4\right\}\)
TH2 : \(\hept{\begin{cases}x^2-5< 0\\x^2-25>0\end{cases}}\Rightarrow\hept{\begin{cases}x^2< 5\\x^2>25\end{cases}}\Rightarrow x\in\varnothing\)
Vậy \(x\in\left\{\pm3;\pm4\right\}\)
2x + xy - 3y = 18
<=> 2x + xy - 6 - 3y = 12
<=> ( 2x + xy ) - ( 6 + 3y ) = 12
<=> x( 2 + y ) - 3( 2 + y ) = 12
<=> ( x - 3 )( 2 + y ) = 12
Lập bảng :
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 7 | -1 | 9 | -3 | 15 | -9 |
2+y | 12 | -12 | 6 | -6 | 4 | -4 | 3 | -3 | 2 | -2 | 1 | -1 |
y | 10 | -14 | 4 | -8 | 2 | -6 | 1 | -5 | 0 | -4 | -1 | -3 |
Vậy ta có 12 cặp ( x ; y ) thỏa mãn
( 4 ; 10 ) , ( 2 ; -14 ) , ( 5 ; 4 ) , ( 1 ; -8 ) , ( 6 ; 2 ) , ( 0 ; -6 ) , ( 7 ; 1 ) , ( -1 ; -5 ) , ( 9 ; 0 ) , ( -3 ; -4 ) , ( 15 ; -1 ) , ( -9 ; -3 )