cho tam giac abc co ab=ac tren tia doi cua cac tia ba va ca lay 2 diem d va e sao cho bd=ce
1.cho tam giac ABC can tai dinh A, trung truc cua canh AC cat CB tai diem D (D nam ngoai doan BC). tren tia doi cua tia AD lay diem E sao cho AE= BD. chung minh tam giac DEC can.( goi y can chung minh CD = CE)
2. cho tam giac ABC co AB < AC, lay diem E tren canh CA sao cho CE=BA, cac duong trung truc cua cac doan thang BE va CA cat nhau tai I
a)chung minh tam giac AIB = tam giac CIE
b)chung minh AI la tia phan giac cua goc BAC
bai 1:cho tam giac ABC vuong tai A,phan giac AD tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc BC
b)biet gocADH=110 đo.Tinh goc ABD
bai2:cho tam giac ABC co AB=AC=BC.Cac tia phan giac BD va CE cat nhau tai O.CMR:
a)BD vuong goc AC va CE vuong goc AB
b)OA=OB=OC
c)goc AOB=goc BOC=goc COA;tu do suy ra so do cua moi goc ay
bai3:cho O la mot diem cua AB.tren hai nua mat phang doi nhau bo AB ve cac tia Ax va By cung vuong goc voi AB.Lay diem M tren tia Ax,diem N tren tia By sao cho AM=BN.CMR:o la trung diem cua MN
bai 4:cho tam giac ABC vuong tai A co goc C=45 do.Ve phan giac AD.Tren tia doi cua tia AD lay diem E sao cho AE=BC.Tren tia doi cua tia CA lay diem F sao cho CF=AB.CMR:BE=BF va BE vuong goc BF
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Cho tam giac ABC. Tren canh AB lay diem D, tren tia doi cua tia CA lay diem E sao cho CE=BD. Goi O la giao diem cua DE va BC. Chung minh rang neu tam giac ABC can tai A thi OD=OE.
cho tam giac ABC tren tia doi cua tia AB lay diem E tren tia doi cua tia AC lay diem D sao cho tia phan giac cua goc C va goc AED cat nhau tai I. Tinh goc CIE theo cac goc ABC va ADE
cho tam giac abc can tai a goc a la gic tu,tren tia doi bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ce .tren tia doi ca lay diem i sao cho ci=ca.a) cm tam giac abd=tam giac ice.b)chung minh ab+ac<ad+ae.c)tu d va e ke duong thang vuong goc voi bc cat ab,ai theo thu tu mn .cm bm=cn.d)chung minh chu vi tam giac abc<chu vi tam giac amn
a)
Ta có: ΔABC cân tại A => góc ABC = góc ACB
mà ACB = ECN ( 2 góc đối đinh )
==> ABD = ECN ( vì D ∈ BC )
Xét ΔDBM và ΔECN có:
+ BDM= NEC = 90°
+ BD = EC (gt)
+ ABD = ECN (cmt)
==> ΔDBM = ΔECN ( c.g.vuông - g.n.kề )
==> MD = NE ( 2 cạnh tương ứng ) ( đpcm )
cho tam giac abc goi d va e la trung diem cua ab va ac , tren tia doi cua tia ed lay diem m sao cho em = ed , tren tia doi cua tia eb lay diem n sao co en = eb a , chung minh tam giac aed = tam giac cem . b, m la trung diem cua cn . c, de // bc va 2de = bc
cac ban oi giup minh voi nhaaaaaaaaaaaaaaa
bai 1 cho goc xoy ve tia phan giac cua goc xoy tren tia ot lay diem m bat ki tren cac tia õ va oy lan luot la lay cac diem a va b sao cho oa =ob goi h l giao diem cua ab va ot . chung minh :
a,ma=mb
b,om la duong trung truc cua ab
c,cho biet ab=6cm oa=5cm tính oh
bai 2 cho tam giac abc co ba goc goc goc nhon duong cao ah vuong goc voi bc tai h tren tia doi cua tia ha lay diem d sao cho ha=hd
cmr:a,bc va cb lan luot la cac tia phangiac cua goc abd va acd
b,ca=cd va bd=ba
c,cho goc acb 45 độ tính góc adc
d, duong cao ah phai them điều kiện gi thi ab song song cd
bai 3 cho tam giac abc co ab =ac ke bd vuong goc ac ce vuong goc ab goi o la giao diem cua bd va ce cmrang
a,bd=ce
b,tam giac oeb=tam giac odc
c,ao là tia phân giác của góc bac
cho tam giac abc can tai a co goc bac =50do tren tia doi cua tia bc lay diem d tren tia doi cua tia cb lay diem e sao cho bd =ba ce=ca tinh goc dae
cho tam giac abc deu ve ben ngoai tam giac cac tam giac abd vuong can tai b tam giac ace vuong can tai c tinh so goc nhon cua ade
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
cho tam giac abc can tai a. lay d tren bc , tren tia doi tia cb lay e sao cho ce=bd. cac duong thang vuong goc voi bc tai d va e lan luot cat cac duong thang ab va ac theo thu tu tai m va n. i la giao diem cu mn va bc. chung minh: a, i la trung diem cua mn