Những câu hỏi liên quan
TL
Xem chi tiết
NA
Xem chi tiết
H24
Xem chi tiết
TT
14 tháng 6 2021 lúc 17:31

giả sử 2a+b chia hết cho 3 thì 2 số kia chia 3 dư 1 vì nó là scp 

nên 2b+c-2c-a = 2b-a-c chia hết cho 3

lại trừ đi 2a+b thì được b-c-3a chia hết cho 3 suy ra b-c chia hết cho 3

tương tự ta có c-a và a-b chia hết cho 3

cậu phân tích p ra sẽ triệt tiêu hết a^3, b^3 , c^3 và còn lại -3ab(a-b)-3bc(b-c)-3ca(c-a) = -3(a-b)(b-c)(c-a) chia hết cho 81

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
LH
4 tháng 9 2017 lúc 22:06

Ta có: \(2a+bc=\left(a+b+c\right)a+bc=a^2+ab+ac+bc\)

          \(=a\left(a+b\right)+c\left(a+b\right)=\left(a+c\right)\left(a+b\right)\)

Tương tự, ta có \(2b+ca=\left(b+c\right)\left(b+a\right)\)và \(2c+ab=\left(c+a\right)\left(c+b\right)\)

Vậy \(\left(2a+bc\right)\left(2b+ca\right)\left(2c+ab\right)=\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2\)là số chính phương.

Bình luận (0)
LM
Xem chi tiết
PD
Xem chi tiết
LD
Xem chi tiết
KG
Xem chi tiết
LP
2 tháng 8 2023 lúc 10:29

Điều kiện đã cho có thể được viết lại thành \(\dfrac{a}{a+b}+\dfrac{b}{b+c}+\dfrac{c}{c+d}+\dfrac{d}{d+a}=2\)

hay \(1-\dfrac{a}{a+b}-\dfrac{b}{b+c}+1-\dfrac{c}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b}{a+b}-\dfrac{b}{b+c}+\dfrac{d}{c+d}-\dfrac{d}{d+a}=0\)

\(\Leftrightarrow\dfrac{b^2+bc-ab-b^2}{\left(a+b\right)\left(b+c\right)}+\dfrac{d^2+da-cd-d^2}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\dfrac{b\left(c-a\right)}{\left(a+b\right)\left(b+c\right)}+\dfrac{d\left(a-c\right)}{\left(c+d\right)\left(d+a\right)}=0\)

\(\Leftrightarrow\left(c-a\right)\left[\dfrac{b}{\left(a+b\right)\left(b+c\right)}-\dfrac{d}{\left(c+d\right)\left(d+a\right)}\right]=0\)

\(\Leftrightarrow\dfrac{b}{\left(a+b\right)\left(b+c\right)}=\dfrac{d}{\left(c+d\right)\left(d+a\right)}\) (do \(c\ne a\))

\(\Leftrightarrow b\left(cd+ca+d^2+da\right)=d\left(ab+ac+b^2+bc\right)\)

\(\Leftrightarrow bcd+abc+bd^2+abd=abd+acd+b^2d+bcd\)

\(\Leftrightarrow abc+bd^2-acd-b^2d=0\)

\(\Leftrightarrow ac\left(b-d\right)-bd\left(b-d\right)=0\)

\(\Leftrightarrow\left(b-d\right)\left(ac-bd\right)=0\)

\(\Leftrightarrow ac=bd\) (do \(b\ne d\))

 Do đó \(A=abcd=ac.ac=\left(ac\right)^2\), mà \(a,c\inℕ^∗\) nên A là SCP (đpcm)

 

 

Bình luận (0)
TP
Xem chi tiết