Tìm (x,y) nguyên dương sao cho \(A=x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}\)là số chính phương
Tìm tất cả số nguyên dương x, y sao cho
\(A=x^2+y^2+\frac{x^2y^2}{\left(x+y\right)^2}\) là số chính phương
Cho 2 số nguyên dương x,y thỏa mãn \(x^2-4y+1⋮\left(x-2y\right)\left(2y-1\right)\). CMR \(|x-2y|\) là số chính phương
cho x+2y và 2x+y là 2 số thực dương khác 2.tìm Min của biểu thức:
\(P=\frac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\frac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(2y+x-2\right)^2}-3\left(x+y\right)\)
Cho các số nguyên x, y, z sao cho \(\frac{x\left(x-y\right)+y\left(y-z\right)+z\left(z-x\right)}{2}\) là một số chính phương. Chứng minh x= y =z
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.
Cho biểu thức:
\(P=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+\frac{3}{4}\left(y+\frac{1}{3}\right)+x^2y^2}{\left(x^2-y\right)\left(1-y\right)+x^2y^2+1}\)
a) Rút gọn P
b) Tính giá trị của biểu thức P với các số nguyên dương x;y thỏa mãn: 1! + 2! +...+ x! = y2
1. Tìm a,b ∈ Z+(a,b ≠1) để 2a+3b là số chính phương
2. Tìm nghiệm nguyên không âm của phương trình:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\)
3. Tìm x,y,z ∈ Z+ t/m:
\(xy+y-x!=1;yz+z-y!=1;x^2-2y^2+2x-4y=2\)
4. Tìm tất cả các số nguyên tố p;q;r sao cho:
pq+qp=r
5. Tìm nghiệm nguyên tố của phương trình:
\(x^y+y^x+2022=z\)
6. CMR: Với n ∈ N và n>2 thì 2n-1 và 2n+1 không thể đồng thời là 2 số chính phương
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
Lúc nãy bận thi online nên giờ mới làm tiếp được, bạn thông cảm.
Bài 4:
Do p; q; r là các SNT nên \(p^q+q^p>2^2+2^2=8\Rightarrow r>8\) nên r là SNT lẻ
Mà r lẻ thì trong 2 số \(p^q;q^p\) phải có 1 số lẻ, một số chẵn.
Do vai trò p; q như nhau nên không mất tính tổng quát ta giả sử p lẻ, q chẵn
\(\Rightarrow q=2\). Lúc này ta có:
\(p^2+2^p=r\)
+Xét p=3\(\Rightarrow p^2+2^p=r=17\left(tm\right)\) (Do p lẻ nên loại TH p=2)
+Xét p>3. Ta có:
\(\left\{{}\begin{matrix}p^2\equiv1\left(mod3\right)\\2^p\equiv\left(-1\right)^p\equiv-1\left(mod3\right)\end{matrix}\right.\)
\(\Rightarrow p^2+2^p\equiv1+\left(-1\right)\equiv0\left(mod3\right)\)
\(\Rightarrow\left(p^2+2^p\right)⋮3\) mà \(p^2+2^p>3\) nên là hợp số
\(\Rightarrow r\) là hợp số, không phải SNT, loại.
Vậy ta có \(\left(p;q;r\right)\in\left\{\left(3;2;17\right);\left(2;3;17\right)\right\}\) tm đề bài
Bài 6: Ta có 1SCP lẻ chia cho 4 dư 1.
Nếu 2n-1 là SCP thì ta có
\(2n-1\equiv1\left(mod4\right)\Leftrightarrow2n+1\equiv3\left(mod4\right)\)
Do đó 2n+1 không là SCP
\(\Rightarrowđpcm\)
Cho x,y nguyên dương thỏa \(x^2-4y+1⋮\left(x-2y\right)\left(2y-1\right)\). Chứng minh rằng: \(\text{|}x-2y\text{|}\)là một số chính phương
Cho x,y,z là 3 số nguyên dương , nguyên tố cùng nhau và \(\left(x-z\right)\left(y-z\right)=z^2\) . Đặt a = xyz . Chứng minh rằng a là số chính phương