Những câu hỏi liên quan
LH
Xem chi tiết
LH
Xem chi tiết
H24
28 tháng 8 2019 lúc 18:24

Cả tử và mẫu đồng bậc:)) Em thử nha, ko chắc..

Với y = 0 thì x khác 0 và \(P=\frac{8x^2}{x^2}=8\)

Với y khác 0, chia cả tử và mẫu của P cho y2. Ta có:

\(P=\frac{8\left(\frac{x}{y}\right)^2+6.\frac{x}{y}}{\left(\frac{x}{y}\right)^2+1}\). Đặt \(\frac{x}{y}=t\)

Thế thì: \(P=\frac{8t^2+6t}{t^2+1}\)

Bí.

Bình luận (0)
NT
25 tháng 2 2020 lúc 16:01

biểu thức đã cho (=) (8-P)x2 + 6yx -Py2=0

tìm denta ra thì đc như sau: y2(-P2+8P+9) >=0  =) -P2+8P+9 >=0 

phần còn lại bấm máy tính ra kết quả là   -1=<P=<9

Min=-1  và Max=9 

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
TH
14 tháng 7 2016 lúc 10:14

toán 12 nha

Bình luận (0)
PN
Xem chi tiết
HT
7 tháng 6 2017 lúc 12:32

vì \(x^2-5x+7=x^2-\frac{2.5}{2}x+\frac{25}{4}+\frac{3}{4}=\left(x-\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)nên phương trình xác định với mọi \(x\)

TXD :\(D=R\)Ta có :

\(A\left(x^2-5x+7\right)=x^2\Leftrightarrow x^2\left(A-1\right)-5Ax+7A=0\)

Nếu \(A=1\Rightarrow5x=7\Leftrightarrow x=\frac{7}{5}\)tức biểu thức nhận được giá trị là \(1\)Nếu \(A\ne1\)Thì phương trình có nghiệm khi : \(\Delta\ge0\Leftrightarrow25A^2-4\left(A-1\right)7A\ge0\Rightarrow A\left(28-3A\right)\ge0\Leftrightarrow0\le A\le\frac{28}{3}\)Vậy nên \(0\le A\le\frac{28}{3}\)            \(A_{Min}=0\Leftrightarrow\frac{x^2}{x^2-5x+7}=0\Leftrightarrow x=0\)            \(A_{Max}=\frac{28}{3}\Leftrightarrow\frac{x^2}{x^2-5x+7}=\frac{28}{3}\Leftrightarrow x=\frac{-5A}{2\left(A-1\right)}\Leftrightarrow x=\frac{14}{5}\)
Bình luận (0)
CB
7 tháng 6 2017 lúc 12:22

Sorry em ko bt làm  em mới học lớp 5 thui

Bình luận (0)
NH
Xem chi tiết
ND
Xem chi tiết
KN
23 tháng 8 2020 lúc 20:50

\(A=5-8x+x^2=-8x+x^2+6-11\)

\(=\left(x-4\right)^2-11\)

Vì \(\left(x-4\right)^2\ge0\forall x\)\(\Rightarrow\left(x-4\right)^2-11\ge-11\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)

Vậy Amin = - 11 <=> x = 4

Bình luận (0)
 Khách vãng lai đã xóa
KN
23 tháng 8 2020 lúc 20:55

\(B=\left(2-x\right)\left(x+4\right)=-x^2-2x+8\)

\(=-\left(x^2+2x+1\right)+9=-\left(x+1\right)^2+9\)

Vì \(\left(x+1\right)^2\ge0\forall x\)\(\Rightarrow-\left(x+1\right)^2+9\le9\)

Dấu "=" xảy ra \(\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Bmax = 9 <=> x = - 1

Bình luận (0)
 Khách vãng lai đã xóa
BK
Xem chi tiết
LD
24 tháng 6 2020 lúc 10:58

A = | x - 3 | + 1

Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)

Dấu = xảy ra <=> | x + 3 | = 0

                      <=> x + 3 = 0

                      <=> x = -3

Vậy AMin = 1 khi x = -3

B = -100 - | 7 - x |

Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)

=> \(-100-\left|7-x\right|\le-100\)

Dấu = xảy ra <=> - | 7 - x | = 0

                     <=> 7 - x = 0

                     <=> x = 7

Vậy BMax = -100 khi x = 7

C = -( x + 1 )2 - | 2 - y | + 11

Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)

=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)

Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0

                     <=> x + 1 = 0 và 2 - y = 0

                     <=> x = -1 và y = 2

Vậy CMax = 11 khi x = -1 ; y = 2

D = ( x - 1 )2 + | 2y + 2 | + 3

Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)

Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0

                      <=> x - 1 = 0 và 2y + 2 = 0

                      <=> x = 1 và y = -1

Vậy DMin = 3 khi x = 1 và y = -1

Bình luận (0)
 Khách vãng lai đã xóa
AG
24 tháng 6 2020 lúc 11:05

a) A=/x-3/+1>=0+1=1

dấu "="sảy ra <=>x-3=0<=>x=3

vậy min A=1 <=>x=3

b) B=-100-/7-x/=<-100-0=-100

dấu "="sảy ra <=>7-x=0<=>x=7

vậy max B=-100<=>x=7

c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11

dấu "="sảy ra <=>x=-1vày=2

vậy max C=11<=>x=-1 và y=-2

d)D=(x-1)^2+/2y+2/+3>=0+0+3=3

dấu "="sảy ra <=>x=1 và y =-1

vậy min D=3<=>x=1 và y=-1

Bình luận (0)
 Khách vãng lai đã xóa
BY
Xem chi tiết
DP
Xem chi tiết
PQ
21 tháng 7 2019 lúc 10:20

ĐK: \(0\le x\le1\)

\(A=\frac{1}{2+\sqrt{x-x^2}}\le\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

\(A=\frac{1}{2+\sqrt{x-x^2}}=\frac{1}{2+\sqrt{-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}}}\ge\frac{1}{2+\sqrt{\frac{1}{4}}}=\frac{2}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Bình luận (0)