cho a,b thuộc N* sao cho \(\frac{a+1}{b}+\frac{b+1}{a}\)thuộc N*
CM:d= ƯCLN (a,b)
CM: a+b\(\ge\)d.d
Cho a,b thuộc N*
CTR:
a,\(\frac{a}{b}+\frac{b}{a}\ge\)2
b,(a+b)\(\left(\frac{1}{a}+\frac{1}{b}\right)\ge\)4
Ai giải được mk tick!
Cho \(\frac{a+1}{b}+\frac{b+1}{a}\) là số tự nhiên (a,b thuộc N)
Gọi d=ƯCLN(a;b).CMR:d2\(\le\)a+b
Câu hỏi của Nguyễn Tuấn Minh - Toán lớp 7 - Học toán với OnlineMath
Cho a,b thuộc N* .chứng minh rằng:
a) \(\frac{a}{b}+\frac{b}{a}\ge2\)
b) \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Lời giải:
a. Xét hiệu $\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2-2ab}{ab}=\frac{(a-b)^2}{ab}\geq 0$ với mọi $a,b\in\mathbb{N}^*$
$\Rightarrow \frac{a}{b}+\frac{b}{a}\geq 2$
Dấu "=" xảy ra khi $(a-b)^2=0$ hay $a=b$.
b.
Xét hiệu $\frac{1}{a}+\frac{1}{b}-\frac{4}{a+b}=\frac{a+b}{ab}-\frac{4}{a+b}$
$=\frac{(a+b)^2-4ab}{ab(a+b)}=\frac{(a-b)^2}{ab(a+b)}\geq 0$ với mọi $a,b\in\mathbb{N}^*$
$\Rightarrow \frac{1}{a}+\frac{1}{b}\geq \frac{4}{a+b}$
Dấu "=" xảy ra khi $a-b=0$ hay $a=b$
a,Tìm a,b,c thuộc Z sao cho \(\frac{x}{6}-\frac{2}{y}=\frac{1}{30}\)
b,Tìm a,b thuộc N biết \(\frac{a}{2}+\frac{b}{3}=\frac{a+b}{2+3}\)
c,Tìm a,b,c thuộc N biết \(\frac{52}{9}=5+\frac{1}{a+\frac{1}{b+\frac{1}{c}}}\)
Cho a, b, c thuộc R phân biệt.
CM. A = \(\left(a^2+b^2+c^2\right)\left[\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}\right]\ge\frac{9}{2}\)
t nói trước đây là bài làm rất xàm nên đừng tin nhé,spam đấy!
Không mất tính tổng quát giả sử \(c\ge0\)
\(a=c+x+y;b=c+y;c=c\)
Ta cần chứng minh \(A=f\left(x;y;c\right)=\left[\left(c+x+y\right)^2+\left(c+y\right)^2+c^2\right]\left[\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right]\ge\frac{9}{2}\)
\(\ge\frac{\left(3c+x+y\right)}{3}\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)=T\left(x;y;c\right)\)
Xét hiệu \(T\left(x;y;c\right)-T\left(x;y;0\right)=c\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge0\)
Nên \(T\left(x;y;c\right)\ge T\left(x;y;0\right)=\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\)
Cần chứng minh \(\frac{1}{3}\left(x+y\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}\right)\ge\frac{9}{2}\)
...
Cho a;b;c thuộc N* ; a<b<c và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=n\) với n thuộc N* . Tìm a,b,c
cho 2 số a và b thỏa mãn a≥1, b≥1. CM: \(\frac{1}{1+a^2}+\frac{1}{1+b^2}\)≥\(\frac{2}{1+ab}\)
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\frac{1+b^2+1+a^2}{\left(1+a^2\right)\left(1+b^2\right)}\ge\frac{2}{1+ab}\)
\(\Leftrightarrow\left(a^2+b^2+2\right)\left(1+ab\right)\ge2\left(1+a^2\right)\left(1+b^2\right)\)
\(\Leftrightarrow a^2+b^2+a^3b+ab^3+2ab+2\ge2a^2b^2+2a^2+2b^2+2\)
\(\Leftrightarrow a^3b+ab^3-2a^2b^2-a^2-b^2+2ab\ge0\)
\(\Leftrightarrow ab\left(a^2-2ab+b^2\right)-\left(a^2-2ab+b^2\right)\ge0\)
\(\Leftrightarrow\left(ab-1\right)\left(a-b\right)^2\ge0\)
Vì bđt cuối luôn đúng với mọi \(a\ge1;b\ge1\) mà các biến đổi trên là tương đương nên bđt đầu luôn đúng
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
tìm a,b thuộc N sao cho
\(\frac{1}{a}-\frac{1}{b}=\frac{2}{143}\)và b - a = 2
Ta có: \(b-a=2\)
\(\Rightarrow b=a+2\)
Biểu thức trở thành: \(\frac{1}{a}-\frac{1}{a+2}=\frac{2}{143}\)
\(\Leftrightarrow\frac{a+2-a}{a\left(a+2\right)}=\frac{2}{143}\)
\(\Leftrightarrow\frac{2}{a\left(a+2\right)}=\frac{2}{143}\)
\(\Leftrightarrow2\cdot143=2a\left(a+2\right)\)
\(\Leftrightarrow2a^2+4a-286=0\)
\(\Leftrightarrow a^2+2a-143=0\)
\(\Leftrightarrow a^2+13a-11a-143=0\)
\(\Leftrightarrow a\left(a+13\right)-11\left(a+13\right)=0\)
\(\Leftrightarrow\left(a+13\right)\left(a-11\right)=0\)
+) \(a=-13\Rightarrow b=a+2=-13+2=-11\)(loại vì \(a,b\notin N\))
+) \(a=11\Rightarrow b=a+2=11+2=13\) (Nhận)
Vậy cặp \(\left(a,b\right)\)cần tìm là \(\left(11,13\right)\)
Tìm a,b,c,d thuộc N sao cho
(1/a.a)+(1/b.b)+(1/c.c)+(1/d.d)=1