Cho 3 số thực dương a, b, c. Tìm min \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
cho a,b,c là 3 số thực dương , tìm min của bt \(P=\frac{a^3+b^3+c^3}{2abc}+\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ca}\)
Ta chứng minh \(P\ge\frac{9}{2}\). Ta đã có: \(\frac{a^3+b^3+c^3}{2abc}\ge\frac{3abc}{2abc}=\frac{3}{2}\)
Vậy cần chứng minh \(\frac{a^{2}+b^{2}}{c^{2}+ab}+\frac{b^{2}+c^{2}} {a^{2}+bc}+\frac{c^{2}+a^{2}}{b^{2}+ac}\geq 3\)
\(\Leftrightarrow a^{2}(\frac{1}{c^{2}+ab}+\frac{1}{b^{2}+ac)}+b^{2}(\frac{1}{c^{2}+ab}+\frac{1}{a^{2}+bc})+c^{2}( \frac{1}{a^{2}+bc}+\frac{1}{b^{2}+ac})\)
\(\geq \frac{4a^{2}}{(a+b)(b+c)}+\frac{4b^{2}}{(c+a)(c+b) }+\frac{4c^{2}}{(a+b)(a+c)}\)
\(\geq \frac{4(a+b+c)^{2}}{(a+b)(b+c)+(c+a)(c+b)+(a+c)(a+ b)}\geq 3\)
BĐT đã được chứng minh
Vậy ta có \(P_{min}=\frac{9}{2}\) khi \(a=b=c\)
Cho 3 số thực dương a, b, c. Tìm min \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
\(P=\frac{a^2}{ab+ac}+\frac{b^2}{ba+bc}+\frac{c^2}{ca+cb}\geq \frac{(a+b+c)^2}{ab+ac+bc+ba+ca+cb}=\frac{(a+b+c)^2}{2(ab+bc+ac)}\)
Theo hệ quả quen thuộc của BĐT AM-GM:
$(a+b+c)^2\geq 3(ab+bc+ac)$
Do đó:
$P\geq \frac{3(ab+bc+ac)}{2(ab+bc+ac)}=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $a=b=c$
cho 3 số thực dương a,b,c thỏa a+b+c=3
tìm min \(P=\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}\)
cho các số thực dương a,b,c thỏa mãn \(a+b+c\le\frac{3}{2}\)
tìm min B=\(\left(3+\frac{1}{a}+\frac{1}{b}\right)\left(3+\frac{1}{b}+\frac{1}{c}\right)\left(3+\frac{1}{c}+\frac{1}{a}\right)\)
\(\text{⋄}\)Dễ có: \(B\ge\left(3+\frac{4}{a+b}\right)\left(3+\frac{4}{b+c}\right)\left(3+\frac{4}{c+a}\right)\)
\(\text{⋄}\)Đặt \(b+c=x;c+a=y;a+b=z\left(x,y,z>0\right)\)thì \(a=\frac{y+z-x}{2};b=\frac{z+x-y}{2};c=\frac{x+y-z}{2}\)
Giả thiết được viết lại thành: \(x+y+z\le3\)và ta cần tìm giá trị nhỏ nhất của \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)\)
\(\text{⋄}\)Ta có: \(\left(3+\frac{4}{x}\right)\left(3+\frac{4}{y}\right)\left(3+\frac{4}{z}\right)=27+36\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+48\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)+\frac{64}{xyz}\)\(\ge27+36.\frac{9}{x+y+z}+48.\frac{27}{\left(x+y+z\right)^2}+64.\frac{27}{\left(x+y+z\right)^3}\ge343\)
Đẳng thức xảy ra khi x = y = z = 1 hay a = b = c = 1/2
Cho a,b,c là các số thực dương thỏa mãn abc=1
Tìm min M=\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)
\(\Leftrightarrow M=\frac{bc}{a^2\left(b+c\right)}+\frac{ca}{b^2\left(c+â\right)}+\frac{ab}{c^2\left(a+b\right)}\)
áp dụng bđt cauchy ta có:
\(\frac{bc}{a^2\left(b+c\right)}+\frac{b+c}{4bc}\ge\frac{1}{a}\);\(\frac{ca}{b^2\left(c+a\right)}+\frac{c+a}{4ca}\ge\frac{1}{b}\);\(\frac{ab}{c^2\left(a+b\right)}+\frac{a+b}{4ab}\ge\frac{1}{c}\)
\(\Rightarrow M\ge\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\ge3\sqrt[3]{\frac{1}{8abc}}=\frac{3}{2}\)
Cho các số thực dương a,,b,c thỏa mãn a+b+c=3
Tìm min của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{a^2+b^2+c^2}\)
Áp dụng BĐT AM-GM ta có :
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}\)
\(=\frac{9}{abc\left(a+b+c\right)}\ge\frac{27}{\left(ab+bc+ca\right)^2}\)
Mặt khác theo BĐT AM-GM có :
\(\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\le\left(\frac{a^2+b^2+c^2+2\left(ab+bc+ca\right)^3}{3}\right)=27\)
\(\Rightarrow\frac{27}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)
Đặt \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\)
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{81}{9}.3=\frac{10}{3}\)
Vậy \(MinP=\frac{10}{3}\Leftrightarrow a=b=c=-1\)
Sửa lại chút , vội quá nên đánh lỗi .
Xét \(t+\frac{1}{t}=\frac{1}{9}+\frac{1}{t}+\frac{8t}{9}\ge2\sqrt{\frac{t}{9}.\frac{1}{t}}+\frac{8}{9}.3=\frac{10}{3}\)
\(\Rightarrow MinP=\frac{10}{3}\Leftrightarrow a=b=c=1\)
tính hộ 1 chia 0 nha
. Cho 3 số thực dương a, b, c thỏa a + b + c = 1. Tìm Min của biểu thức P = \(\frac{1}{a+b}\) + \(\frac{1}{b+c}\) + \(\frac{1}{c+a}\)
Cho a,b,c là các số thực dương. Tìm min của:
\(P=\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\)
Đề thi học sinh giỏi tỉnh nghệ an 2018-2019
đây là cách của t. t nghĩ nó đơn giản hơn lời giải đó
Ta có : \(\left(a+b\right)^4\le\left(a+b\right)^4+\left(a-b\right)^4=2a^4+2b^4+12a^2b^2\)
\(=2a^4+2b^4+\frac{32}{3}a^2b^2+\frac{2}{3}.2a^2b^2\le2a^4+2b^4+\frac{32}{3}a^2b^2+\frac{2}{3}\left(a^4+b^4\right)\)( Cô-si )
\(=\frac{8}{3}a^4+\frac{8}{3}b^4+\frac{32}{3}a^2b^2\)
Tương tự : \(\left(b+c\right)^4\le\frac{8}{3}b^4+\frac{8}{3}c^4+\frac{32}{3}b^2c^2\); \(\left(a+c\right)^4\le\frac{8}{3}a^4+\frac{8}{3}c^4+\frac{32}{3}a^2c^2\)
Áp dụng BĐT Cô-si dạng Engel, ta có :
\(\left(\frac{a}{a+b}\right)^4+\left(\frac{b}{b+c}\right)^4+\left(\frac{c}{c+a}\right)^4\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)^2}{\frac{16}{3}\left(a^4+b^4+c^4\right)+\frac{32}{3}\left(a^2b^2+b^2c^2+a^2c^2\right)}=\frac{\left(a^2+b^2+c^2\right)^2}{\frac{16}{3}\left(a^2+b^2+c^2\right)^2}=\frac{3}{16}\)
Dấu "=" xảy ra \(\Leftrightarrow\)x = y = z
Vậy GTNN của P là \(\frac{3}{16}\)\(\Leftrightarrow\)x = y = z
SOS vẫn thể hiện bản lãnh của nó:)
Đặt \(M=\) (ảnh này không hiện thì nhắc em đăng lại)
\(P-\frac{3}{16}\)
\(=\frac{\left(a^2b+3ab^2+2abc+ac^2+b^3\right)^2\left(a^2b+ab^2+b^3-2abc-ac^2\right)^2}{\left(a+b\right)^4\left(b+c\right)^4\left[\left(a+b\right)^4+\left(b+c\right)^4\right]}+\frac{M}{\left(c+a\right)^4\left[\Sigma_{cyc}\left(a+b\right)^4\right]\left[\left(a+b\right)^4+\left(b+c\right)^4\right]}\)
\(+\left[\frac{\left(a^2+b^2+c^2\right)^2}{\left(a+b\right)^4+\left(b+c\right)^4+\left(c+a\right)^4}-\frac{3}{16}\right]\)
Việc SOS phần còn lại rất nhẹ nhàng.
P/s: Cách này dành cho những ai bí quá + đủ kiên nhẫn ngồi quy đồng:P
tìm min M biết
\(M=\frac{a-d}{d+b}+\frac{d-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+d}\)với a,b,c,d là các số thực dương
ta có:
\(M+4=\left(\frac{a-d}{d+b}+1\right)+\left(\frac{d-b}{b+c}+1\right)+\left(\frac{b-c}{c+a}+1\right)+\left(\frac{c-a}{d+a}+1\right)\)
\(=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{c+a}+\frac{c+d}{d+a}\)
\(=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{c+a}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{d+a}\right)\ge\left(a+b\right).\frac{4}{a+b+c+d}+\left(c+d\right).\frac{4}{a+b+c+d}\)
\(=\frac{4\left(a+b+c+d\right)}{a+b+c+d}=4\)
\(\Rightarrow M+4\ge4\Rightarrow M\ge0\)
vậy min M=0 khi a=b=c=d