Những câu hỏi liên quan
PD
Xem chi tiết
PL
2 tháng 7 2019 lúc 21:11

\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)

\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)

Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)

\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)

Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)

\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)

Bình luận (0)
PD
2 tháng 7 2019 lúc 21:13

Cảm ơn bạn

Bình luận (0)
PD
Xem chi tiết
TS
Xem chi tiết
NP
Xem chi tiết
VM
14 tháng 10 2019 lúc 16:57

dk 3x+2 

P= \(\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)x^2+4\left(3x-1\right)}=\frac{x\left(3x-1\right)}{3x+2}.\frac{3x+2}{\left(3x-1\right)\left(x^2+4\right)}=\)\(\frac{x}{x^2+4}\)

dk \(\hept{\begin{cases}3x-1\ne0\\3x+2\ne0\end{cases}< =>\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne\frac{-2}{3}\end{cases}}}\)(1)

P(x2+4) = x <=> Px2-x+4P=0

để phương trình trên có nghiệm thỏa mãn (1) <=> \(\hept{\begin{cases}P\frac{1}{3^2}-\frac{1}{3}+4P\ne0\\P\frac{4}{9}+\frac{2}{3}+4P\ne0\\1^2-4.P.\left(4P\right)\ge0\end{cases}< =>\hept{\begin{cases}P\ne\frac{3}{37}\\P\ne\frac{-3}{20}\\\frac{-1}{4}\le P\le\frac{1}{4}\end{cases}}}\)

Vậy P max = 1/4 khi \(\frac{1}{4}x^2-x+1=0< =>x=2\)

P min = -1/4 khi \(\frac{-1}{4}x^2-x-1=0< =>x=-2\)

Bình luận (0)
DV
Xem chi tiết
H24
10 tháng 11 2021 lúc 14:34

a.\(A=\dfrac{x^2-4x+4}{x^3-2x^2-\left(4x-8\right)}=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}=\dfrac{\left(x-2\right)^2}{\left(x^2-4\right)\left(x-2\right)}=\dfrac{x-2}{\left(x-2\right)\left(x+2\right)}=\dfrac{1}{x+2}\)

 

Bình luận (0)
NM
10 tháng 11 2021 lúc 14:35

\(A=\dfrac{\left(x-2\right)^2}{x^2\left(x-2\right)-4\left(x-2\right)}\left(x\ne\pm2\right)\\ A=\dfrac{\left(x-2\right)^2}{\left(x-2\right)^2\left(x+2\right)}=\dfrac{1}{x+2}\\ B=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\left(x>0\right)\\ B=\dfrac{4\sqrt{x}\left(\sqrt{x}+1\right)}{3\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Bình luận (0)
HN
Xem chi tiết
KB
Xem chi tiết
DV
Xem chi tiết
C7
Xem chi tiết
NP
11 tháng 7 2017 lúc 10:08

Ta có:\(\frac{\left[x\left(x-2\right)\right]}{x^2+8x-20}+12x-3=\frac{x\left(x-2\right)}{x^2-2x+10x-20}+12x-3\)

\(=\frac{x\left(x-2\right)}{x\left(x-2\right)+10\left(x-2\right)}+12x-3=\frac{x\left(x-2\right)}{\left(x+10\right)\left(x-2\right)}+12x-3\)

\(=\frac{x}{x+10}+12x-3=\frac{x+\left(12x-3\right).\left(x+10\right)}{x+10}=\frac{x+12x^2+120x-3x-30}{x+10}\)

\(=\frac{12x^2+118x-30}{x+10}\)

Bình luận (0)