Những câu hỏi liên quan
H24
Xem chi tiết
H24
3 tháng 1 2019 lúc 22:49

\( (2x+5y+1).(2^{|x|}+y+ x^2 +x)=105\)

Vì 105 là số lẻ nên 2x+5y+1 và 2|x|+y+x2+x cũng là số lẻ.

Có: 2x+5y+1 là số lẻ. Mà 2x+1 là số lẻ

\(\Rightarrow\)5y là số chẵn

\(\Rightarrow\)y là số chắn

Có 2|x|+y+x2+x là só lẻ. Mà x2+x=x(x+1) là tích 2 số tự nhiên liên tiếp nên là số chắn, y cũng là số chẵn

\(\Rightarrow\)2|x| là số lẻ

\(\Rightarrow\)x=0

Thay x=0 vào biểu thức ta có: 

\(\left(2.0+5y+1\right)\left(2^{\left|0\right|}+y+0^2+0\right)=105\)

\(\Leftrightarrow\left(0+5y+1\right)\left(1+y+0\right)=105\)

\(\Leftrightarrow\left(5y+1\right)\left(1+y\right)=105\)

\(\Leftrightarrow5y+5y^2+1+y=105\)

\(\Leftrightarrow5y^2+6y+1=105\)

\(\Leftrightarrow5y^2+6y-104=0\)

\(\Leftrightarrow5y^2-20y+26y-104=0\)

\(\Leftrightarrow5y\left(y-4\right)+26\left(y-4\right)=0\)

\(\Leftrightarrow\left(y-4\right)\left(5y+26\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y-4=0\\5y+26=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=4\\y=\frac{-26}{5}\end{cases}}}\)

Mà \(x;y\in Z\Rightarrow y=4\)

Vậy x=0;y=4(tmyc)

Bình luận (0)
CT
Xem chi tiết
PN
Xem chi tiết
KD
14 tháng 3 2018 lúc 21:32

đậu xanh đậu đỏ 
đậu đen đậu vàng
bạn ơi cùng đậu
xem vui không nào...

Bình luận (0)
NN
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
CK
Xem chi tiết
DD
Xem chi tiết
MY
17 tháng 7 2021 lúc 15:19

 đặt\(A=\dfrac{x^3}{2x+3y+5z}+\dfrac{y^3}{2y+3z+5x}+\dfrac{z^3}{2z+3x+5y}\)

\(=>A=\dfrac{x^4}{2x^2+3xy+5xz}+\dfrac{y^4}{2y^2+3yz+5xy}+\dfrac{z^4}{2z^2+3xz+5yz}\)

BBDT AM-GM 

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)}\)

theo BDT AM -GM ta chứng minh được \(xy+yz+xz\le x^2+y^2+z^2\)

vì \(x^2+y^2\ge2xy\)

\(y^2+z^2\ge2yz\)

\(x^2+z^2\ge2xz\)

\(=>2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+xz\right)< =>xy+yz+xz\le x^2+y^2+z^2\)

\(=>2\left(x^2+y^2+z^2\right)+8\left(xy+yz+xz\right)\le10\left(x^2+y^2+z^2\right)\)

\(=>A\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{10\left(x^2+y^2+z^2\right)}=\dfrac{x^2+y^2+z^2}{10}=\dfrac{\dfrac{1}{3}}{10}=\dfrac{1}{30}\left(đpcm\right)\)

dấu"=" xảy ra<=>x=y=z=1/3

Bình luận (0)