CMR: 1/1.2+1/2.3+1/3.4+....+1/49.50=1/26+1/27+.....+1/49+1/50
CMR: 1/1.2+1/2.3+1/3.4+....+1/49.50=1/26+1/27+.....+1/49+1/50
Các bạn trình bày chi tiết cho mik nhé!! Có j mik like cho...
Bạn giải chi tiết cho mik đi. Chứ CHTT mik ko hiểu
CMR: 1/1.2+1/2.3+1/3.4+....+1/49.50=1/26+1/27+.....+1/49+1/50
Các bạn trình bày chi tiết cho mik nhé!! Có j mik like cho...
Bạn vào câu hỏi tương tự nhé !!!
tích mình nha !!!
Chứng tỏ :
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 = 1/26 + 1/27 + .. + 1/ 50
cmr A=1/1.2+1/3.4+1/5.6+.......+1/49.50=1/26+1/27+........+1/50
\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
=>\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{49}-\frac{1}{50}\)
=>\(A=1-\frac{1}{50}=\frac{49}{50}\)
mà A=49/50
=>1/26+1/27+...+1/50 =49/50
CMR: 1/1.2+1/3.4+1/5.6+....+1/49.50+1/26=1/27=....=1/50
CMR : \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50} =\frac{1}{26}+\frac{1}{27}+...+\frac{1}{49}+\frac{1}{50}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+........+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
\(=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{49}+\frac{1}{50}-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)\)
\(=1+\frac{1}{2}+......+\frac{1}{50}-\left(1+\frac{1}{2}+....+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+........+\frac{1}{50}\)
\(\Rightarrowđpcm\)
ta có:1/1.2+1/3.4+1/5.6+...+1/49.50=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
Bấm mình nha
cmr :
1/1.2 + 1/3.4+1/5.6+...+1/49.50 = 1/26+1/27+1/28+...+1/50
ta có:
1/1.2+1/3.4+1/5.6+...+1/49.50
=>1-1/2+1/3-1/4+1/5-1/6+...+1/49-1/50
=>(1+1/3+1/5+1/7+...+1/49)-(1/2+1/4+1/6+...+1/50)
=>(1+1/2+1/3+...+1/49+1/50)-(1/2+1/4+1/6+...+1/50).2
=>(1+1/2+1/3+...+1/49+1/50) -( 1+1/2+1/3+...+1/25)
=>1/26+1/27+1/28+...+1/50=1/26+1/27+1/28+...+1/50
hay 1/1.2+1/3.4+1/5.6+...+1/49.50=1/26+1/27+1/28+...+1/50
(1/1.2+1/2.3+1/3.4+…+1/49.50)x=49/50
Đug r pn
có cần chi tiết hơn k
\(\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..+\frac{1}{49.50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\left(1-\frac{1}{50}\right)x=\frac{49}{50}\)
\(\frac{49}{50}x=\frac{49}{50}\)
\(x=\frac{\frac{49}{50}}{\frac{49}{50}}\)
\(x=1\)
Vậy \(x=1\)
Gọi A=1/1.2+1/2.3+1/3.4+...+1/49.50
A=1-1/2+1/2-1/3+1/3-1/4+...+1/49-1/50
A=1-1/50
A=49/50
Viết lại ta có: (1/1.2+1/2.3+1/3.4+...+1/49.50)x=49/50
49/50x=49/50
=> x=1
Chứng minh rằng:
a) 1.2 - 1 phần 2! + 2.3 -1 phần 3! + 3.4 -1/4! + ... + 99.100 -1 /100! < 2
b) 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50 = 1/26 + 1/27 + 1/28 + ... + 1/50