chứng minh răng trong 4 số tự nhiên liên tiếp bao giờ cũng có 1 số chia hết cho 4
Chứng minh rằng trong 4 số tự nhiên liên tiếp bao giờ cũng có một số chia hết cho 4
gọi 4 số tự nhiên liên tiếp là a; a+1;a+2;a+3
nếu a chia hết cho 4 -> điều phải chứng minh
nếu a chia 4 dư 1 thì a+3 chia hết cho 4-> dpcm
nếu a chia 4 dư 2 thì a+2 chia hết cho 4 -> dpcm
nếu a chia 4 dư 3 thì a+1 chia hết cho 4 -> dpcm
tick cho mình nha
Vì trong 4 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 4
=> số đó chia hết cho 4
gọi 4 số tự nhiên liên tiếp là a; a+1;a+2;a+3
nếu a chia hết cho 4 -> điều phải chứng minh
nếu a chia 4 dư 1 thì a+3 chia hết cho 4-> dpcm
nếu a chia 4 dư 2 thì a+2 chia hết cho 4 -> dpcm
nếu a chia 4 dư 3 thì a+1 chia hết cho 4 -> dpcm
tick cho mình nha
a) Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
b) Chứng minh rằng trong 5 số tự nhiên bất kỳ bao giờ cũng chọn được 2 số có hiệu chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
1.Chứng tỏ rằng:
a)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 2
b)Trong hai số tự nhiên liên tiếp ,có một số chia hết cho 3
2.Chứng tỏ rằng:
a)Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
b)Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
3.Chứng tỏ rằng số có dạng aaaaaa bao giờ cũng chia hết cho 7
4.Chứng tỏ rằng số có dạng abcabc bao giờ cũng chia hết cho 11
5. Chứng tỏ rằng nếu hai số có cùng số dư khi chia co 7 thì hiệu của chúng chia hết
Giúp mình nha mình đang gấp lắm!!!
Câu 5 là chỗ cuối cùng là chia hết cho 7 nha .mình quên ghi
hãy lấy hai thí dụ để minh họa mỗi câu sau là đúng
a, trong 4 số tự nhiên liên tiếp bao giờ cũng có 2 số mà hiệu hai số chia hết cho 3
b, trong 5 số tự nhiên liên tiếp bao giờ cũng có 2 số mà hiệu mà hiệu hai số chia hết cho 4
a, Thí dụ: 2; 3; 4; 5 có 5-2=3 chia hết cho 3
9;10;11;12 có 12 - 9 = 3 chia hết cho 3
b, Thí dụ: 1;2;3;4;5 Có 5-1=4 chia hết cho 4
6;7;8;9;10 có 10-6=4 chia hết cho 4
Chứng minh là
a)trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b)tích của 2 số tự nhiên liên tiếp bao giờ cũng là 1 số chẵn
c) tích hai số chẵn liên tiếp chia hết cho 8
Chứng minh rằng tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 4.
Gọi 4 số tự nhiên liên tiếp là a;a+1;a+2;a+3
Ta có: a+a+1+a+2+a+3=( a+a+a+a)+(1+2+3)
= ax4+6
Vì ax4 chia hết cho 4 nhưng 6 ko chia hết cho 4
=> tổng 4 số tự nhiên liên tiếp ko chia hết cho 4
nên xem lại đề
Ta có 4 số tự nhiên liên tiếp:n;n+1;n+2;n+3; nếu n chia hết cho 5 suy ra ĐPCM
nếu n chia 4 dư 1 suy ra n+3 chia hết cho 4
nếu n chia 4 dư 2 suy ra n+2 chia hết cho 4
nếu n chia 4 dư 3 suy ra n+1 chia hết cho 4
Suy ra trong 4 số TN liên tiếp chia hết cho 4
vi trong 4 stn lien tiep se co 1 so chia het cho 4
vi chi can 1 so trong h chia het cho 4 thi h do chia het cho 4
suy ra h do chia het cho 4
1 /
a) chứng tỏ rằng trong ba số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 3 . Hãy phát biểu bài toán tổng quát .
b)
chứng tỏ rằng trong bốn số tự nhiên liên tiếp bao giờ cũng tồn tại một số chia hết cho 4 . Hãy phát biểu bài toán tổng quát .
2 /
a) Tổng của ba số tự nhiên liên tiếp có chia hết cho 3 không ? Tại sao ?
b) Tổng của bốn số tự nhiên liên tiếp có chia hết cho 4 không ? Tại sao ?
P/s : mấy bạn vui lòng trả lời nhanh , tỉ mỉ câu này giùm mk nha !
Nếu cần mk làm câu 2 trc :
2)
a.
Gọi số tự nhiên đầu tiên là a
=> 2 số tiếp theo là a+1 và a+2
=> Tổng của chúng là :
a + a + 1 + a + 2
= 3a + 3
= 3 ( a + 2 ) chia hết cho 3 ( đpcm )
b.
Gọi số tự nhiên đầu tiên là a
=> 3 số tiếp theo là a+1; a+2 và a+3
=> tổng của chúng là :
a + a + 1 + a + 2 + a + 3
= 4a + 6
ta có 4a chia hết cho 4 mà 6 ko chia hết cho 4
=> ko chia hết
1)
a.
Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2
+) Nếu a chia hết cho 3 => đpcm
+) Nếu a ko chia hết cho 3 : ( có 2 trường hợp )
TH1 : a = 3k + 1
=> a + 2 = 3k + 1 + 2
=> a + 2 = 3k + 3
=> a + 2 = 3 ( k + 1 ) chia hết cho 3
=> a + 2 chia hết cho 3 ( đpcm )
TH2 : a = 3k + 2
=> a + 1 = 3k + 2 + 1
=> a + 1 = 3k + 3
=> a + 1 = 3 ( k + 1 ) chia hết cho 3
=> a + 1 chia hết cho 3 ( đpcm )
Bài 1:CMR:
a)Tích của 4 số tự nhiên liên tiếp bao giờ cũng chia hết cho 24
b)tích của 5 số tự nhiên liên tiếp bao giờ cũng chia hết cho 120
a) Gọi số đó là x thì 4 số tự nhiên liên tiếp là : x ; x + 1 ; x + 2 ; x + 3
Ta để ý thì ta thấy tích 3 số tự nhiên liên tiếp luôn chia hết cho 6 ( Cái này nhỏ hơn nên bạn có thể tự CM )
Một trong 4 số liên tiếp này có ít nhât 1 số chia hết cho 4
=> tích chia hết cho 6.4 = 24
b) Từ cách CM trên, bạn có thể chứng minh 5 số tự nhiên liên tiếp luôn có 1 số chia hết cho 5
Và tích liên tiếp trên sẽ chia hết cho 24.5 = 120
Chứng minh rằng:
a,Trong 5 số tự nhiên liên tiếp khác nhau không chia hết cho 5 thì bao giờ cũng có hai số chia cho 5 cùng số dư
b,Trong 10 số tự nhiên không chia hết cho 10 thì bao giờ cũng tìm được hai số mà hiệu của chúng chia hết cho 10