cho bốn số nguyên dương a,b,c,d phân biệt thỏa mãn a^2+b^2=c^2+d^2=n .CMR n là hợp số
Cho a,b,c nguyên dương thỏa mãn a^2+ab+b^2=c^2+cd+d^2 CMR a+b+c+d là hợp số
Cho a,b,c,d là các số nguyên dương thỏa mãn a^2+b^2=c^2+d^2. CMR a+b+c+d là hợp số
a) CHO 3 SỐ DƯƠNG a , b , c THỎA MÃN abc=1 . CMR: (a+b)(b+c)(c+a)>= 2(1+a+b+c)
b) CHO m,n LÀ 2 SỐ NGUYÊN DƯƠNG THỎA MÃN: m^2+n^2+2018 CHIA HẾT CHO mn. CMR m,n LÀ 2 SỐ LẺ VÀ NGUYÊN TỐ CÙNG NHAU
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
Cho a, b, c, d là các số nguyên dương thỏa mãn a2+b2=c2+d2. cmr a+b+c+d là hợp số?
Theo hằng đẳng thức
\(a^2+b^2=\left(a+b\right)^2-2ab;\)
\(c^2+d^2=\left(c+d\right)^2-2cd\)
\(\Rightarrow\)
\(a^2+b^2\)và \(a+b\) cùng chẵn, hoặc cùng lẻ;
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
nên \(a+b+c+d\) là hợp số.
Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)
= a(a -1) + b( b -1) + c( c – 1) + d( d – 1)
Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp
=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2
=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn
Lại có a2 + c2 = b2 + d2=> a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.
Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)
a + b + c + d là hợp số.
Cho a, b, c, d là các số nguyên dương thỏa mãn: a2 + ab + b2 = c2 + cd + d2. Chứng minh a + b + c + d là hợp số.
cho bốn số nguyên dương a,b,c,d thỏa mãn đẳng thức a mũ 2 + b mũ 2 = c mũ 2 + d mũ 2 .chứng minh rằng tổng a+b+c+d là 1 hợp số
Choa,b,c,d là các số nguyên dương thỏa mãn
a^2 + b^2 = c^2 + d^2
CMR a+b+c+d là hợp số
Theo hằng đẳng thức
a^2+b^2=(a+b)^2-2ab;
c^2+d^2=(c+d)^2-2cd.
Suy ra a^2+b^2 và a+b cùng chẵn, hoặc cùng lẻ;
c^2+d^2 cùng chẵn hoặc cùng lẻ. Kết hợp với
a^2+b^2=c^2+d^2 ta suy ra a+b và c+d cùng chẵn,
hoặc cùng lẻ. Từ đó a+b+c+d chẵn, và vì
a+b+c+d>=4 nên a+b+c+d là hợp số.
tick cho mk nha
Cho a,b,c,d là các số nguyên dương thỏa mãn: a2+ c2= b2+ d2 CMR : a+b+c+d là hợp số
Xét:\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)\left(d^2+d\right)\)
\(=a\left(a+1\right)+b\left(b+1\right)+c\left(c+1\right)+d\left(d+1\right)\)
Ta có: \(a.\left(a+1\right);b\left(b+1\right);c\left(c+1\right);d\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho 2
\( \implies\)\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho 2
Mà \(a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) chia hết cho 2
\( \implies\) \(a+b+c+d\) chia hết cho 2
Mà \(a+b+c+d\) \(\geq\) \(4\) \(\implies\) \(a+b+c+d\) là hợp số (đpcm)
Bài 1: cho a b c d là các số nguyên dương chẵn thỏa mãn
a+b=c+d và ab-cd=-4.cmr abc chia hết cho 48
bài 2 : cmr ko tồn tại 5 số nguyên dương phân biệt sao cho tổng của 3 số bát kỳ là 1 số nguyên tố
bài 3: tim a thuộc Z+ để 2016^2017 + 2018^2019 chia hết cho (a^2 +a)(2+a)`
bài 4 tìm n thuộc n sao cho dãy n+9;2n+9;3n+9:..... ko có số chính phương.
(giải nhanh giúp mình trong tối nay nha mai mình đi học rồi rồi mình tích cho :) anigato)
cho a,b,c,d là các số nguyên dương thỏa mãn a^2+c^2=b^2+d^2 Chứng minh rằng: a+b+c+d là hợp số
Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)
\(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)
Vì \(a\) là số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp .
\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.
\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn .
Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .
Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))
Vậy : \(a+b+c+d\) là hợp số .
Xét :
Vì là số nguyên dương nên là hai số tự nhiên liên tiếp .
chia hết cho 2. Tương tự ta có : đều chia hết cho 2.
là số chẵn .
Lại có : là số chẵn .
Do đó : là số chẵn mà (Do )
Vậy :