Lựa chọn đáp án đúng nhất
Chia số 7567 thành ba phần tỉ lệ nghịch với 23;56 và 38. Vậy 3 phần cần tìm lần lượt là:
CHỌN ĐÁP ÁN ĐÚNG
Nếu y = k/x/ thì:
A. y tỉ lệ thuận với x theo hệ số tỉ lệ k
B. x tỉ lệ thuận với y theo hệ số tỉ lệ k
C. y tỉ lệ nghịch với x theo hệ số tỉ lệ k
D. x tị lệ nghịch với y theo hệ số tỉ lệ k
a, Chia số 315 thành ba phần tỉ lệ nghịch với 3;5;6
b, Chia số 786 thành ba phần tỉ lệ nghịch với 0,2;10/3;4/5
a, Gọi 3 phần đó là \(x,y,z\)
Ta có: \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}\)và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{5}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{5}+\frac{1}{6}}=\frac{315}{0,7}=450\)
\(\frac{x}{\frac{1}{3}}=450\Leftrightarrow x=150\)
\(\frac{y}{\frac{1}{5}}=450\Leftrightarrow y=90\)
\(\frac{z}{\frac{1}{6}}=450\Leftrightarrow z=75\)
Vậy 3 phần đó là \(150;90;75\)
Mình làm hơi tắt, bạn thông cảm nhé!
Hãy chia số 230 thành ba phần sao cho phần thứ nhất và phần thứ hai tỉ lệ nghịch với 1/3 và 1/2. Phần thứ nhất và phần thứ ba tỉ lệ nghịch với 1/5 và 1/7.
Giải:
Gọi ba số được chia lần lượt là a, b và c
Theo đề ra, ta có:
\(a+b+c=230\)
Và \(\left\{{}\begin{matrix}a.\dfrac{1}{3}=b.\dfrac{1}{2}\\a.\dfrac{1}{5}=c.\dfrac{1}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{c}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{15}=\dfrac{b}{10}\\\dfrac{a}{15}=\dfrac{c}{21}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=15.5\\b=10.5\\c=21.5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=75\\b=50\\c=105\end{matrix}\right.\)
Vậy ...
Chia 1 số thành các phần tỉ lệ với các số cho trước
a) chia số 330 thành ba số tỉ lệ thuận với 0,4;0,6;1,2
b)chia số 1208 thành ba số tỉ lệ nghịch với 0,(6);0,7;1,5
Chia số 640 thành 3 phần sao cho phần thứ nhất và phần thứ hai tỉ lệ nghịch với 5 và 2, phần thứ hai và thứ ba tỉ lệ nghịch với 3 và 7. Giá trị ba phần lần lượt là?
Gọi 3 phần lần lượt tìm là a,b,c :
5a = 2b , 3b = 7c biết rằng a + b + c = 640
\(\Leftrightarrow\frac{a}{2}=\frac{b}{5};\frac{b}{7}=\frac{c}{3}\)
\(\Leftrightarrow\frac{a}{14}=\frac{b}{35}=\frac{c}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{35}=\frac{c}{15}=\frac{a+b+c}{14+35+15}=\frac{640}{64}=10\)
\(\Leftrightarrow\frac{a}{14}=10;\frac{b}{35}=10;\frac{c}{15}=10\)
\(\Leftrightarrow a=140;b=350;c=150\)
mình làm trước k nhe
Chia số 640 thành 3 phần sao cho phần thứ nhất và phần thứ hai tỉ lệ nghịch với 5 và 2, phần thứ hai và phần thứ ba tỉ lệ nghịch với 3 và 7.
Giúp mình với!
Gọi ba phần đó lần lượt là: \(x;y;z\) (\(x;y;z\) > 0)
Theo bài ra ta có: \(\dfrac{x}{\dfrac{1}{5}}\) = \(\dfrac{y}{\dfrac{1}{2}}\) ⇒ 5\(x\) = 2y ⇒ \(x\) = \(\dfrac{2}{5}\)y
\(\dfrac{y}{\dfrac{1}{3}}\) = \(\dfrac{z}{\dfrac{1}{7}}\) ⇒ 3y = 7z ⇒ z = \(\dfrac{3}{7}\)y
⇒ \(\dfrac{2}{5}\)y+ y+ \(\dfrac{3}{7}\)y = 640
⇒ y.( \(\dfrac{2}{5}\) + 1 + \(\dfrac{3}{7}\)) = 640
⇒y . \(\dfrac{64}{35}\) = 640
⇒ y = 640 : \(\dfrac{64}{35}\)
y = 350
\(x\) = 350 x \(\dfrac{2}{5}\) = 140
z = 350 x \(\dfrac{3}{7}\) = 150
chia số 184 thành ba phần sao cho phần thứ nhất và phần thứ hai tỉ lệ nghịch với 1/3 và 1/2, phần thứ nhất và phần thứ ba tỉ lệ nghịch với 1/5 và 1/7. tìm 3 phần đó
Cho số 6200 thành ba phần : a) Tỉ lệ thuận với 2,3,5 b)tỉ lệ nghịch với 2,3,5
Cho số 6200 thành ba phần : a) Tỉ lệ thuận với 2,3,5 b)tỉ lệ nghịch với 2,3,5