Tổng của 20 số chính phương liên tiếp ko phải là số chính phương.
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương
20 số nguyên liên tiếp có 6 số chia hết cho 3 →→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1 →→ tổng 20 số chính phương liên tiếp chia 3 dư 2
Bấm mình nha...
Khải Nhi à, bạn đếm sai rồi, thế còn dãy 20 số từ 0 đến 19 hay các dãy đại loại thế phải có 7 số mới đúng
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương.
Cho tam giác ABC vẽ AH vuông góc BC taih H . Lấy D,E sao cho D ddpos xứng với H,E đối xứng vs H qua AC . Gọi giao điểm của DE vs AB và AC lần lượt là M,N
a, C/m tam giác AMD=tam giác AMH
b, C/m AD=AE
c, C/m AH là p/giác góc MHN
Vẽ giúp mk hình vs đc k ạ
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương
cmr tổng của 20 số chính phương liên tiếp ko là số chính phương
Tổng 20 số chính phương liên tiếp có dạng:
\(A=n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+19\right)^2.\)
\(A=20n^2+2\cdot\left(1+2+3+...+19\right)n+1^2+2^2+3^3+...+19^2.\)
\(A=20n^2+2\cdot\frac{19\cdot20}{2}n+\frac{19\cdot\left(19+1\right)\left(2\cdot19+1\right)}{6}\)
\(A=20n^2+19\cdot20\cdot n+19\cdot13\cdot10\)
Dễ thấy A chia hết cho 2 nhưng không chia hết cho 4 nên A không phải là số chính phương.
20 số nguyên liên tiếp có 6 số chia hết cho 3
=> tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
=> tổng 20 số chính phương liên tiếp chia 3 dư 2
dãy từ 0 đến 19 có 7 số chia hết cho 3
tổng của 20 số chính phương liên tiếp có phải là số chính phương không ?
20 số nguyên liên tiếp có sáu số chia hết cho 3
=>tổng của 20 số chính phương liên tiếp có 6 số chia hết cho 3 và có 14 số chia dư 1
=> tổng 20 số chính phương liên tiếp chia 3 dư 2
=> tổng 20 số chính phương liên tiếp không phải số chính phương
CMR: Tổng 20 số chính phương liên tiếp ko thể là số chính phương
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2
Chứng minh tổng của 20 số chính phương liên tiếp không phải là số chính phương
ai giup minh cho 2 like
20 số nguyên liên tiếp có 6 số chia hết cho 3
→ tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
→ tổng 20 số chính phương liên tiếp chia 3 dư 2
Cách làm thủ công nhất là gọi 20 số đó lần lượt là n^2;(n+1)^2...(n+19)^2 rồi tách ra phân tích thnàh 1 cái bình phương + 1 số <>0
20 số nguyên liên tiếp có 6 số chia hết cho 3
Tổng 20 số chính phương liên tiếp có 6 số chia hết cho 3 và 14 số chia 3 dư 1
Tổng 20 số chính phương liên tiếp chia 3 dư 2