Những câu hỏi liên quan
TC
Xem chi tiết
PH
Xem chi tiết
KN
Xem chi tiết
PN
Xem chi tiết
NL
4 tháng 12 2016 lúc 20:23

Để chứng tỏ S chia hết cho 65 cần chứng tỏ S chia hết cho 5 và 13

+) chứng minh S chia hết cho 5

Ta có: 

5 chia hết cho 5

52 chia hết cho 5

53 chia hết cho 5

........................

52012chia hết cho 5

​Vậy ta suy ra: S = 5+ 52+53+54+...+52011+52012 chia hết cho 5 (1)

+) chứng minh S chia hết cho 13

Tổng S có 2012 số, nhóm 4 số vào 1 nhóm thì ta vừa hết.

Ta có:

S=( 5+52+53+54) + (56+57+58+59) +...+ ( 52009+ 52010+52011+52012)

  = 5(1+5+52+53)+56(1+5+52+53)+...+52009(1+5+52+53)

  =(1+5+52+52)(5+56+...+52009)

  = 156.(5+56+...+52009)chia hết cho 13(2)

Từ(1) và (2) ta suy ra S chia hết cho 5 và 13.

Mà ƯCLN(5;13)=1

Suy ra S chia hết cho 5.13=65

Vậy S chia hết cho 65.

\

Bình luận (0)
PN
Xem chi tiết
PN
4 tháng 12 2016 lúc 19:31

cho S = 5 + 5^2 + 5^3 + 5^4 +... + 5^2011 + 5^2012 . chứng tỏ S chia hết cho 65

Bình luận (0)
CP
4 tháng 12 2016 lúc 19:33

bạn nhóm 4 số lại một nhóm rồi đặt thừa số chung là được

K MÌNH NHA

Bình luận (0)
CP
4 tháng 12 2016 lúc 20:02

ta có:

S = 5 + 52 + 5+ 54 +... + 52009 + 52010 + 52011 + 52012

   = (5 + 52 + 5+ 54 ) + ( 5+ 5+ 5+ 58 ) +... + ( 52009 + 52010 + 52011 + 52012)

   = 780 + 54( 5 +52 + 5+ 54 ) +...+ 52008( 5 + 5+ 5+ 54) 

   = 780 + 5x 780  + ... + 52008 x 780

   = 780 ( 1 + 5+ ... + 52008 )

   = 65 x 12 x ( 1 + 5+ ... + 52008)  chia hết cho 65

K nha

Bình luận (0)
H24
Xem chi tiết
TD
9 tháng 5 2019 lúc 20:26

Cách này cũng đúng nhưng có cách khác nhanh hơn

S = ( 5 + 5^2 + 5^3 + 5^4 ) + .....

Gộp 4 số liên tiếp lại rồi C/M

Chúc học tốt

Bình luận (0)
DD
6 tháng 12 2020 lúc 19:58
Bạn làm đúng rồi nhưng hơi dài
Bình luận (0)
 Khách vãng lai đã xóa
NT
23 tháng 3 2021 lúc 20:14

6/7/8/9

Bình luận (0)
 Khách vãng lai đã xóa
ND
Xem chi tiết
TV
16 tháng 1 2015 lúc 21:16

S=(5+52+53+54)+(55+56+57+58)+(59+510+511+512)+...+(52009+52010+52011+52012).(có 503 biểu thức)

S=65*A2+65*B0+65*C0+...+65*D0

Vì mỗi số hạng đều nhân cho 65

=> S chia hết cho 65

Bình luận (0)
H24
18 tháng 3 2018 lúc 15:03

lam sai rui

Bình luận (0)
HD
31 tháng 12 2018 lúc 10:31

S=5+52+53+..........+52012

S=(5+52+53+5^4)+..........+(5^2009+5^2010+5^2011+5^2012)

S=1(5+52+53+5^4)+.........+5^2008(5+52+53+5^4)

S=1.780+.........+5^2008.780

S=1.12.65+.......+5^2008.12.65

S=65[12(1+5^4+5^8+......+5^2008)] chia hết cho 65(có thừa số 65)

Vậy S chia hết cho 65 

Bình luận (0)
H24
Xem chi tiết
NT
9 tháng 5 2019 lúc 20:28

từ (1) và (2)

=> S ⋮5

mình nghĩ hơi thừa chỉ cần từ (1) là đủ rồi

nên đánh (2) vào"=>S⋮5"

Để khi chứng tỏ thì nói "từ (1) và (2) => S ⋮ 65"

Bình luận (0)
PM
9 tháng 5 2019 lúc 21:07

1) Ở (1) vô lý nha bạn, tổng S đều có số hạng 5 là sao? số hạng có tận cùng là 5 chứ.

Ok, mik nhận xét thế thôi nhé. Cách trình bày của bạn khá chặt chẽ. Mà bạn viết vào vở thì sử dụng kí hiệu toán học ý, trong toán đừng viết chữ nhiều quá. ( VD: chia hết cho)

Bình luận (2)
BS
Xem chi tiết
ND
3 tháng 4 2016 lúc 9:08

nhóm 4 số liên tiếp lại với nhau(vì 2012 chia hết cho4) ta có

\(\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2009}+5^{2010}+5^{2011}+5^{2012}\right)\)

\(=780+5^4.780+...+5^{2008}.780\)

\(=780\left(1+5^4+...+5^{2008}\right)\)

Vì 780 chia hết cho 65

=>\(=780\left(1+5^4+...+5^{2008}\right)\) chia hết cho 65

hay S chia hết cho 65

Bình luận (0)