Chứng minh (n+2019)(n+2020) là một số chẵn với mọi số tự nhiên n
chứng minh (n+2009)(n+2010) là một số chẵn với mọi số tự nhiên n.
Chứng minh (n+2011) (n+2012) là một số chẵn với mọi số tự nhiên n
vì (n+2011)(n+2012) là tích 2 số tự nhiên liên tiếp => (n+2011)(n+2012)chia hết cho 2
=> (n+2011)(n+2012) là số chẵn
Vì (n+2011)(n+2012) là 2 số tự nhiên liên tiếp suy ra có ít nhất 1 số chẵn
=>(n+2011)(n+2012) chia hết cho 2
=>(n+2011)(n+2012) là số chẵn
a,Chứng minh rằng (2020^2019+1)(2020^2019-1) chia hết cho 3
b,Tìm số tự nhiên n để n^5 + 96n là số nguyên tố
giúp hộ với
Chứng minh với mọi số tự nhiên n thì tích (n+4) . (n+7) là một số chẵn
+) Nếu n là số tự nhiên lẻ thì n + 4 là số lẻ và n + 7 chẵn .
=> ( n + 4 ) . ( n + 7 ) = lẻ x chẵn là số chẵn .
+) Nếu n là số chẵn thì n + 4 là số chẵn và n + 7 là số lẻ .
=> ( n + 4 ) . ( n + 7 ) = chẵn x lẻ là số chẵn .
Vậy bài toán được chứng minh .
Chứng minh rằng (n+2010)(n+2013) là một số chẵn, với mọi số tự nhiên N
giúp mình nhanh nha
Giả sử nếu n là một số lẻ ta có:
n + 2010 là một số lẻ
n + 2013 là một số chẵn
Mà tích của một số lẻ và một số chẵn là số chẵn
=> Với n là một số lẻ thì thỏa mãn yêu cầu đề bài
Giả sử nếu n là một số chãn ta có:
n + 2010 là một số chẵn
n + 2013 là một số lẻ
Mà tích của.... ( viết như trên)
=> Với n là một số chẵn cũng thỏa mãn yêu cầu đề bài
Vậy (n+2010)(n+2013) là một số chẵn với mọi số tự nhiên n
<=> ĐPCM
_HT_
Chứng minh rằng : n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
Nếu n là chẵn thì n+1 là lẻ.
Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.
Nếu n là lẻ thì n+1 là chẵn
Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn
Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
xet n=2k =>n chia het cho 2
xét n=2k+1=>n+1=2k+1+1=2k+2=2(k+1) chia hết cho 2
vay n.(n+1) la so chan voi moi so tu nhien n
Nếu n là chẵn thì n+1 là lẻ.
Ta có: n.(n+1) là chẵn nhân lẻ nên sẽ có kết quả n.(n+1) là chẵn.
Nếu n là lẻ thì n+1 là chẵn
Ta có: n.(n+1) là lẻ nhân chẵn nên sẽ có kết quả n.(n+1) là chẵn
Vậy n . ( n + 1 ) là số chẵn với mọi số tự nhiên n
chứng minh rằng :n(n+2017) là số chẵn với mọi số tự nhiên n
Chứng minh với mọi số tự nhiên N thì tích :(N+2)x(N+5)là số chẵn
có 2 trường hợp
nếu n là số chẵn nên n+2 là số chẵn nên tích (n+2) x(n+5) là số chẵn
nếu n là số lẻ thì n+5 là số chẵn nên tích trên là số chẵn
=> (n+2)x(n+5) là số chẵn
giúp với , làm đc cho 1 like
2,chứng minh rằng (n+2019^2020)*(n+2020^2020) chia hết cho 2 với mọi số tự nhiên n
3,tìm các số tự nhiên có 3 chữ số thỏa mãn: Khi viết tiếp số đó vào bên phải số 679 thì đc số mới là số có 6 chữ số chia hết cho các số 5,6,7,9
có bao nhiêu số tự nhiên gồm 4 chữ số có tính chất sau:số đó chia hết cho 11 và có tổng các chữ số của nó cũng chia hết cho 11