Những câu hỏi liên quan
AN
Xem chi tiết
LH
Xem chi tiết
HQ
7 tháng 2 2017 lúc 20:30

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

Bình luận (0)
TH
7 tháng 2 2017 lúc 20:21

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

Bình luận (0)
HQ
7 tháng 2 2017 lúc 20:41

Bài 3:

\(a,2^{1000}\div5\)

Ta có:

\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)

Vì a có tận cùng là 6

\(\Rightarrow2^{1000}\div5\)\(1\)

Bình luận (0)
DT
Xem chi tiết
EE
Xem chi tiết
LT
Xem chi tiết
TP
24 tháng 6 2017 lúc 15:54

a) Một số lẻ thì có dạng 2a+1 (a thuộc N). 

Ta có: (2a+1)= 4a2 + 4a +1

4a2 và 4a chia hết cho 4, cho nên 4a2 + 4a +1 chia 4 dư 1 => điều phải chứng minh

b) Tương tự: (2a+1)= 4a2 + 4a +1 = 4a(a+1) +1

Ta thấy a+1 là số chẵn => 4(a+1) chia hết cho 8  => 4a(a+1) +1 chia 8 dư 1 => điều phải chứng minh

Bình luận (0)
DL
24 tháng 6 2017 lúc 15:47

a) Gọi số tự nhiên lẻ là 2x+1.

=>Bình phương của số lẻ là: (2x+1)2=4x2+4x+1=4x(x+1)+1=B(4)+1

=>Chia 4 dư 1.

Bình luận (0)
NA
Xem chi tiết
H24
17 tháng 11 2016 lúc 20:38

11;12;13;14

Bình luận (0)
H24
Xem chi tiết
HK
Xem chi tiết
NT
Xem chi tiết
TD
22 tháng 10 2016 lúc 19:13

kq là 1 bạn ak

Bình luận (0)