Những câu hỏi liên quan
NT
Xem chi tiết
MQ
9 tháng 4 2020 lúc 12:09

Đặt S = ( 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/2017.2018 )

Đặt A = ( 1/1.2 + 1/3.4  + ... + 1/2017.2018)

= 1 - 1/2 + 1/3 - 1/4  + ... + 1/2017  - 1/2018

= ( 1 + 1/3 + ... + 1/2017 ) - ( 1/2 + 1/4 + ... + 1/2018 )

= ( 1 + 1/2 + ... + 1/2018 ) - 2 ( 1/2 + 1/4 + ... + 1/2018) )

= ( 1 + 1/2 + ... + 1/2018 ) - ( 1 + 1/2 + ... + 1/1009 )

= 1/1010 + 1/1011 + ... + 1/2018

=> A - ( 1/1010 + 1/1011 + ... + 1/2017 ) = 1/2018

=> S = 1/2018

Vậy S = 1/2018

Bình luận (0)
 Khách vãng lai đã xóa
NT
9 tháng 4 2020 lúc 14:02

thanks bạn nhiều

Bình luận (0)
 Khách vãng lai đã xóa
LH
Xem chi tiết
LR
13 tháng 8 2016 lúc 11:30

A=\(\frac{1}{1.2}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{2017.2018}\)

A=1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{2017}\)-\(\frac{1}{2018}\)

A=1-\(\frac{1}{2018}\)

A=\(\frac{2017}{2018}\)

Bình luận (0)
SG
13 tháng 8 2016 lúc 11:47

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2017.2018}\)

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1009}\right)\)

\(A=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2017}+\frac{1}{2018}\)

Đến đây bình thường ta nhóm 2 số vào với nhau nhưng ở đây có lẻ số hạng nên không nhóm được => đề sai

Bình luận (0)
H24
13 tháng 8 2016 lúc 14:57
soyeon_Tiểu bàng giải  chua giai xong
Bình luận (0)
BQ
Xem chi tiết
SG
Xem chi tiết
SG
29 tháng 6 2021 lúc 17:14

Ai giúp đi, làm ơnnnnnnnnnnnnnnnnnnn

Bình luận (0)
 Khách vãng lai đã xóa
NC
29 tháng 6 2021 lúc 17:19

\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

\(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)

\(B=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)

\(B< \frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\)

\(B< \frac{50}{60}\Leftrightarrow B< \frac{5}{6}\)

Bình luận (0)
 Khách vãng lai đã xóa
DG
20 tháng 8 2024 lúc 8:41

con khỉ tao đéo b

 

Bình luận (0)
LN
Xem chi tiết
LN
10 tháng 5 2018 lúc 15:11

\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)

\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)

\(A=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)\(A=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)

\(A=\frac{1}{1010}+\frac{1}{2000}+...+\frac{1}{2018}\)

\(B=3028.\left(\frac{1}{1010.2018}+...+\frac{1}{2018.1010}\right)\)

\(B=\frac{3028}{1010.2018}+...+\frac{3028}{2018.1010}\)

\(B=\frac{1}{1010}+\frac{1}{2018}+...+\frac{1}{2018}+\frac{1}{1010}\)

\(B=2.\left(\frac{1}{1010}+...+\frac{1}{2018}\right)\)

\(=>\frac{A}{B}=\frac{1}{2}\)

Bình luận (0)
LN
10 tháng 5 2018 lúc 20:37

Linh Phương Ngô chứng minh a/b là số nguyên cơ mà

Bình luận (0)
LN
10 tháng 5 2018 lúc 20:41

Thế thì mình k biết. 

Bình luận (0)
KN
Xem chi tiết
H24
26 tháng 6 2019 lúc 8:35

\(\frac{1}{1.2}+\frac{1}{3.4}+......+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-....+\frac{1}{49}-\frac{1}{50}=\left(1+\frac{1}{3}+....+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{50}\right)=\left(1+\frac{1}{2}+.....+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)=\left(1+\frac{1}{2}+....+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{25}\right)=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

\(theocaua\Rightarrow A=\frac{1}{26}+\frac{1}{27}+......+\frac{1}{50}>\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\left(5sohang\right)+\frac{1}{40}+\frac{1}{40}+....+\frac{1}{40}\left(10sohang\right)+\frac{1}{50}+\frac{1}{50}+....+\frac{1}{50}\left(10sohang\right)=\frac{1}{4}+\frac{1}{5}+\frac{1}{6}=\frac{37}{60}>\frac{35}{60}=\frac{7}{12}\left(1\right)\)

\(A=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}< \frac{1}{25}+\frac{1}{25}+...+\frac{1}{25}\left(5sohang\right)+\frac{1}{30}+\frac{1}{30}+....+\frac{1}{30}\left(10sohang\right)+\frac{1}{40}+\frac{1}{40}+.....+\frac{1}{40}\left(10sohang\right)=\frac{1}{4}+\frac{1}{3}+\frac{1}{5}=\frac{47}{60}< \frac{5}{6}=\frac{50}{60}\left(2\right)\) \(\left(1\right);\left(2\right)\Rightarrow\frac{7}{12}< A< \frac{5}{6}\)

Bình luận (0)
PN
Xem chi tiết
HP
Xem chi tiết
NM
27 tháng 8 2017 lúc 10:40

a) = 1-1/2+1/2-1/3+1/3-1/4

    = 1-1/4=3/4

b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018

   =1-1/2018=2017/2018

c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015

   = 1/2-1/2015=2015/4030-2/4030=2013/4030

Bình luận (0)
H24
27 tháng 8 2017 lúc 11:10

a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)

b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)

\(=1-\frac{1}{2018}\)

\(=\frac{2017}{2018}\)

c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)

\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)

\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)

\(=\frac{3}{2}.\frac{2013}{4030}\)

\(=\frac{6039}{8060}\)

Bình luận (0)
TT
3 tháng 5 2018 lúc 21:09

]\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

Bình luận (0)
NL
Xem chi tiết