Những câu hỏi liên quan
DD
Xem chi tiết
KS
9 tháng 12 2018 lúc 7:11

\(\frac{x^2+y^2+z^2-2xy+2xz-2yz}{x^2-2xy+y^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y\right)^2-z^2}\)

\(=\frac{\left(x-y+z\right)^2}{\left(x-y-z\right)\left(x-y+z\right)}\)

\(=\frac{x-y+z}{x-y-z}\)

Bình luận (0)
SS
Xem chi tiết
LN
Xem chi tiết
TN
27 tháng 5 2016 lúc 20:21

A=\(\frac{2xy-x^2+z^2-y^2}{x^2+z^2-y^2+2xz}\)=\(\frac{z^2-\left(x^2-2xy+y^2\right)}{\left(x^2+2xz+z^2\right)-y^2}\)=\(\frac{z^2-\left(x-y\right)^2}{\left(x+z\right)^2-y^2}\)=\(\frac{\left(z+x-y\right)\left(z-x+y\right)}{\left(x+z-y\right)\left(x+z+y\right)}\)=\(\frac{\left(z-x+y\right)}{\left(x+z+y\right)}\)

Bình luận (0)
NA
Xem chi tiết
H24
11 tháng 7 2019 lúc 13:11

Ta có: \(\hept{\begin{cases}xy+x+y=1\\yz+y+z=3\\xz+x+z=7\end{cases}}\Rightarrow\hept{\begin{cases}xy+x+y+1=2\\yz+y+z+1=4\\xz+x+z+1=8\end{cases}}\Rightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=2\\\left(y+1\right)\left(z+1\right)=4\\\left(x+z\right)\left(z+1\right)=8\end{cases}}\)

Nhân theo vế: 

\(\left[\left(x+1\right)\left(y+1\right)\left(z+1\right)\right]^2=64\Rightarrow\orbr{\begin{cases}\left(x+1\right)\left(y+1\right)\left(z+1\right)=8\\\left(x+1\right)\left(y+1\right)\left(z+1\right)=-8\end{cases}}\)

Thay vào từng trường hợp tìm x;y;z

Bình luận (0)
TB
Xem chi tiết
LL
Xem chi tiết
NV
Xem chi tiết
H24
27 tháng 12 2016 lúc 21:37

Lớp 6 trường nào kinh vậy

Bình luận (0)
NV
27 tháng 12 2016 lúc 21:39

thế có trả lời được ko

Bình luận (0)
JL
27 tháng 12 2016 lúc 22:13

Bn là người học trường nào z?

Sao mà học đè khó thế?

Bình luận (0)
NS
Xem chi tiết
LH
3 tháng 8 2019 lúc 15:42

\(\frac{x}{5}=\frac{y}{6}\Rightarrow\frac{x}{20}=\frac{y}{24};\frac{y}{8}=\frac{z}{7}\Rightarrow\frac{y}{24}=\frac{z}{21}\Rightarrow\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\Rightarrow x=60;y=72;z=63\)

Bình luận (0)
H24
3 tháng 8 2019 lúc 15:43

1,\(\Rightarrow\frac{x}{40}=\frac{y}{48}=\frac{z}{42}\)\(=\frac{69}{46}=\frac{3}{2}\)

=>x=60;y=72;z=63

2, t tự.

Bình luận (0)
PT
Xem chi tiết
TH
29 tháng 6 2017 lúc 17:17

\(\frac{2xy-x^2+z^2-y^2}{-x^2+y-z^2+2xz}\)

\(=\frac{-\left[\left(x^2-2xy+y^2\right)-z^2\right]}{-\left[\left(x^2-2xz+z^2\right)-y\right]}\)

\(=\frac{-\left[\left(x-y\right)^2-z^2\right]}{-\left[\left(x-z\right)^2-y\right]}\)

\(=\frac{-\left(x-y-z\right)\left(x-y+z\right)}{-\left(x-z\right)^2+y}\)

Bình luận (0)