Những câu hỏi liên quan
OO
Xem chi tiết
TA
Xem chi tiết
NT
Xem chi tiết
OO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

Bình luận (0)
NT
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Bình luận (0)
VU
Xem chi tiết
DD
10 tháng 9 2017 lúc 21:19

\(a.\left(x^3-16x\right)=0\)

\(\Leftrightarrow x\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x-4=0\\x+4=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=0\\x=4\\x=-4\end{cases}}}\)

Uầy lười lm waa

Bình luận (0)
VU
10 tháng 9 2017 lúc 21:22

. Hãy nhiệt tình lên :>> Chúng ta là công dân cùng một nước,phải giúp đỡ nhau a~~~

Bình luận (0)
H2
Xem chi tiết
LM
Xem chi tiết
DT
Xem chi tiết
HL
Xem chi tiết
DL
14 tháng 11 2015 lúc 17:21

a)thiếu đề

b)n(n-1)+1

*)Nếu n=2k(kEZ)

thì n(n-1)+1=2k(2k-1)+1=4k2-2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

*)Nếu n=2k+1(kEZ)

thì n(n-1)+1=(2k+1)(2k+1-1)+1=(2k+1)(2k)+1=4k2+2k+1(ko chia hết cho 2 vì 1 ko chia hết cho 2)

Vậy với mọi nEZ thì n(n-1)+1 đều không chia hết cho 2

c)Nếu n=3k(kEZ)

thì (n-1)(n+2+1)=(3k-1)(3k+2+1)=(3k-1)(3k+3)=3k(3k+3)-(3k+3)=9k2-3k-3(chia hết cho 3)

cái này bạn xét tương tự, xét 3k;3k+1;3k+2

Bình luận (0)
LN
Xem chi tiết