Chứng tỏ rằng 102003 + 125 chia hết cho 45
chứng tỏ rằng:102003+125 chia hết cho 45
b] chứng tỏ rằng:số 543.799.11+58 là hợp số
vì chia hết cho 45 suy ra chia hết cho 9và 5
mà 10 mũ 2003+125=1000000000.....(2003 chữ số 0)+125=100000000..125(2000 số 0) có tổng các chữ số chia hết cho 9 và có tận cùng là 5 chia hết 5
vì 543.799.11 có tận cùng là 7 và 58 có tận cùng là 8 nên sẽ có tận cùng là 5 chia hết cho 5
ta có : 10\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)\(⋮\)5 mà 125\(⋮\)5 \(\Rightarrow\)10\(^{2003}\)+ 125\(⋮\)5
ta lại có 10\(^{2003}\)= 1000...0000 có tổng các chữ số bằng 1
\(\Rightarrow\)10\(^{2003}\)+ 125 có tổng các chữ số bằng 1 + 2 + 1 + 5 = 9 nên :
10\(^{2003}\)\(⋮\)9 mà ( 5 ; 9 ) = 1
\(\Rightarrow\)10\(^{2003}\)+ 125 \(⋮\)45
chứng tỏ rằng:
A=100^2008+125 chia hết cho 45
B=5^2008+5^2007+5^2006 chia het cho 31
dễ lắm nhé
nếu cậu đọc lập suy nghĩ sẽ ra thôi
giải hộ tớ đi mà vô thách đức tin 1
chứng tỏ 10\(^{2008}\)+125 chia hết cho 45
để 10^2008+125 chia hết cho 45
=>10^2008+125 chia hết cho 9 và 5
vì 10^2008 chia hết cho 5,125 chia hết cho 5
=>10^2008 +125 chia hết cho 5 (1)
ta có :10^2008+125=100....00+125=1...0125
vì 1+1+2+5 =9 chia hết cho 9 =>10^2008 +125 chia hết cho 9 (2)
từ (1) và (2) =>10^2008 +125 chia hết cho 45 (đpcm)
chứng tỏ rằng: 125^7 . 25^9 . 5^20 chia hết cho 101
Chứng minh rằng 101983+125 chia hết cho 45
101983+125
101983=101973.1010
=Vì 1010=10000000000/45 nên 101973 .1010/ hay 101983/45
125/45
=>101983+125/45
(dấu"/" của mik nghĩa là chia hết)
Chứng tỏ rằng : 5 mũ 20 + 25 mũ 11 + 125 mũ 7 chia hết cho 31.
\(=5^{20}+\left(5^2\right)^{11}+\left(5^{ }^3\right)^7\)
=\(5^{^{ }20}+5^{22}+5^{21}\)
\(=5^{20}\cdot\left(1+5^2+5^1\right)\)
=\(5^{20}\cdot\left(1+25+5\right)\)
=\(5^{20}\cdot31\)
Vì 31 chia hết chó 31 nên
\(5^{20}+25^{^{ }11}+125^7\)chia hết cho 31
\(^{5^{20}+25^{11}+125^7}\)=\(1.5^{20}+25.25^{10}+\left(5^3\right)^7\)=\(1.5^{20}+25.\left(5^2\right)^{10}+5^{21}\)=\(1.5^{20}+25.5^{20}+5.5^{20}\)
=\(^{5^{20}.\left(1+25+5\right)}\)=\(5^{20}.31\)chia hết cho 31
Vậy \(5^{20}+25^{11}+125^7\)chia hết cho 31
5^20+25^11+125^7=5^20+(5^2)^11+(5^3)^7= 5^20+5^22+5^21=5^20(1+5^2+5)=5^20.31
Vậy 5^20+25^11+125^7 chia hết cho 31
Chứng minh rằng:
A=102008+125 chia hết cho 45
Chứng minh rằng:
A=102008+125 chia hết cho 45
vì 102008 có tổng các chữ số bằng 1 mà 125 có tổng các chữ số =8 nên khi ta thêm 1 sẽ được 9 \(⋮\)9
mà 125 đã có tận cùng là 5 nên125\(⋮\)5
\(\Rightarrow\)A\(⋮\)45
Dễ thấy 102008 \(⋮\) 5 và 45 \(⋮\) 5 nên A = 102008 + 45 \(⋮\) 5 (1).
Ta có: A = 100...0 (2008 chữ số 0) + 125.
Tổng các chữ số của tổng A là: 1 + 0 + 0 + ... + 0 + 1 + 2 + 5 = 9 \(⋮\) 9 nên A \(⋮\) 9 (2).
Từ (1) và (2) \(\Rightarrow A⋮\) 5 và 9 \(\Rightarrow A⋮BCNN\left(5;9\right)=45\left(đpcm\right)\)
chứng tỏ rằng 125^7 + 25^9 - 5^20 chia hết cho 101