Cho x+2y=1. Tìm GTLN của xy
Cho: x+2y=1. Tìm GTLN của A=xy
Lời giải:
$x+2y=1\Rightarrow x=1-2y$. Khi đó:
$A=(1-2y)y=y-2y^2=-(2y^2-y)=-[2(y^2-\frac{y}{2}+\frac{1}{4^2})-\frac{1}{8}]$
$=\frac{1}{8}-2(y-\frac{1}{4})^2\leq \frac{1}{8}$
Vậy $A_{\max}=\frac{1}{8}$.
Giá trị này đạt tại $y-\frac{1}{4}=0\Leftrightarrow y=\frac{1}{4}$
$x=1-2.\frac{1}{4}=\frac{1}{2}$
Cho: x+2y=1 tìm GTLN của P= xy
B1: cho x-2y=2. tìm GTNN của Q= \(x^2+2y^2-x+3y\)
B2: a) tìm GTLN của P=\(x^2+y^2+xy+x+y\)
b) tìm GTLN của Q=\(-5x^2-2xy-2y^2+14x+10y-1\)
Bài 2 :
a) \(P=x^2+y^2+xy+x+y\)
\(2P=2x^2+2y^2+2xy+2x+2y\)
\(2P=x^2+2xy+y^2+x^2+2x+1+y^2+2y+1-2\)
\(2P=\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2-2}{2}\)
\(P=\frac{\left(x+y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2}{2}-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y+1=0\end{cases}}\)
Mình nghĩ đề phải là tìm GTLN của \(P=x^2+y^2+xy+x-y\)hoặc đổi dấu x và y thì dấu "=" mới xảy ra đc
@ Phương ơi ! Cái dòng \(P=\)cuối ấy . Chỗ đấy là \(\ge-1\)em nhé!
Cho x+2y=8 tìm gtln của B=xy
Help me
\(x\) + 2y = 8
\(2y\) = 8 - \(x\)
y = \(\dfrac{8-x}{2}\)
y = - \(\dfrac{x}{2}\) + 4
Thay y = - \(\dfrac{x}{2}\) + 4 vào biểu thức B = \(xy\) ta có:
B = \(x\).(-\(\dfrac{x}{2}\) + 4)
B = - \(\dfrac{x^2}{2}\) + 4\(x\)
B = -\(\dfrac{1}{2}\). (\(x^2\) - 8\(x\) + 16) + 8
B = - \(\dfrac{1}{2}\).(\(x\) - 4)2 + 8
Vì \(\dfrac{1}{2}\).(\(x\) - 4)2 ≥ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\) - 4)2 ≤ 0 ⇒ - \(\dfrac{1}{2}\).(\(x\) - 4)2 + 8 ≤ 8
Dấu bằng xảy ra khi: \(x\) - 4 = 0 ⇒ \(x\) = 4; thay \(x\) = 4 vào biểu thức:
y = - \(\dfrac{1}{2}\) \(x\)+ 4 ta có y = - \(\dfrac{4}{2}\) + 4 = 2
Vậy giá trị lớn nhất của B là 8 xảy ra khi \(x\) = 4; y = 2
cho x+2y=1. Tìm GTLN của A=xy
Tìm x biết
|x+1|-|x2-1|=0
1 cho biểu thức A=5x(xy^2-2xy)-5x^2y^2. Rút gọn A .b) Tính GT của A khi x=-1/2 ,y=2
2. Tìm GTLN của bt A = |x-7|-|x-9|.Q= |x-2|+|x-8| b) tìm GTLN của bt P= 9-2|x-3|
1.Tìm x biết
|x+1|-|x^{2}-1|=0
2cho x+2y=1. Tìm GTLN của A=xy
Cho x, y là các số nguyên thỏa mãn: x^2 -2y= xy. Tìm GTLN của Q= x-y/x+y
Cho \(\left(x-1\right)\left(y-1\right)\ge1\). Tìm GTLN của \(A=\frac{x^2y+xy^2}{\left(x^2+y^2+8\right)^2.\sqrt{1+x^2y^2}}\)