Cho \(\frac{a}{b}=\frac{c}{d}\)
Cmr: \(\frac{a}{a+b}=\frac{c}{c+d}\)
Giải giúp mik nhé
Cho 2 số hữu tỉ \(\frac{a}{b}\&\frac{c}{d}\) (b>0,d>0). Chứng minh rằng \(\frac{a}{b}>\frac{c}{d}\)thì \(\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)
Các bạn giúp mik nhanh nhanh nhé mik bận lắm
Bài làm
Giả sử: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với ab, ta được
ad + ab > bc + ab
=> a( b + d ) > b( a + c )
\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow ad>bc\)
Cộng cả hai vế với dc, ta được:
ad + dc > bc + dc
=> d( a + c ) > c( b + d )
\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)( đpcm )
Cho \(\frac{a}{b}=\frac{c}{d}\)CMR:
\(a,\frac{a.c}{b.d}=\frac{a^2+c^2}{b^2+d^2}\) \(b,\frac{a.c}{b.d}=\frac{a^2-c^2}{b^2-d^2}\)\(c,\frac{a.c}{b.d}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\)
GIẢI GIÚP TỚ NHANH NHÉ! CẢM ƠN NHIỀU!
Cho \(\frac{a}{b}=\frac{c}{d}\) ( b và d \(\ne0\) )
CMR : a) \(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)
b) \(\frac{a+b}{b}=\frac{c+d}{d}\)
c) \(\frac{a-b}{b}=\frac{c-d}{d}\)
Ai giải chi tiết, nhanh và đúng mik tick cho!!!
học rồi mà cứ cố tình hỏi
thách thức người khác thì đúng hơn
Câu 1: Cho a,b,c,x,y,z thỏa mãn điều kiện:
\(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}.\)\(CMR:\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}.\)
Câu 2: Cho a,b,c \(\ne\)0 khác nhau thỏa mãn điều kiện:
\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}.\)Tính giá trị của \(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}.\)
Câu 3: Cho a,b,c,d thỏa mãn điều kiện:
\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}.\)
Tính:\(M=\frac{a+b}{c+d}+\frac{b+c}{d+a}+\frac{c+d}{a+b}+\frac{d+a}{b+c}.\)
Hơi dài 1 tí nhưng cố giúp mik nha!!! quan trọng nhất câu 1 các câu khác k cần cx đc !!!! giúp t câu 1 thui cx đc !!!Đúng mik tik cho !!!
Câu 1:
Đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow x=ak;y=bk;z=ck\)
Ta có: \(\frac{bz-cy}{a}=\frac{bck-bck}{a}=0\) (1)
\(\frac{cx-az}{b}=\frac{ack-ack}{b}=0\) (2)
\(\frac{ay-bx}{c}=\frac{abk-abk}{c}=0\) (3)
Từ (1),(2),(3) suy ra \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Câu 2:
Theo đề bài ta có: \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\), thêm 1 vào mỗi phân số ta được:
\(\frac{a}{b+c}+1=\frac{b}{a+c}+1=\frac{c}{a+b}+1\)
\(\Rightarrow\frac{a+b+c}{b+c}=\frac{a+b+c}{a+c}=\frac{a+b+c}{a+b}\)
\(\Rightarrow\left(a+b+c\right)\cdot\frac{1}{b+c}=\left(a+b+c\right)\cdot\frac{1}{a+c}=\left(a+b+c\right)\cdot\frac{1}{a+b}\)
Vì a,b,c khác nhau và khác 0 nên đẳng thức xảy ra chỉ khi a + b + c = 0 => \(\hept{\begin{cases}a+b=-c\\b+c=-a\\a+c=-b\end{cases}}\)
Thay vào P ta được:
\(P=\frac{b+c}{a}+\frac{a+c}{b}+\frac{a+b}{c}=\frac{-a}{a}+\frac{-b}{b}+\frac{-c}{c}=\left(-1\right)+\left(-1\right)+\left(-1\right)=-3\)
Vậy P = -3
Câu 3:
Theo đề bài ta có \(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}\), bớt 1 ở mỗi phân số ta được:
\(\frac{2a+b+c+d}{a}-1=\frac{a+2b+c+d}{b}-1=\frac{a+b+2c+d}{c}-1=\frac{a+b+c+2d}{d}-1\)
\(\Rightarrow\frac{a+b+c+d}{a}=\frac{a+b+c+d}{b}=\frac{a+b+c+d}{c}=\frac{a+b+c+d}{d}\)
- Nếu a + b + c + d \(\ne\) 0 => a = b = c = d lúc đó M = 1 + 1 + 1 + 1 = 4
- Nếu a + b + c + d = 0 => a + b = -(c + d)
b + c = -(d + a)
c + d = -(a + b)
d + a = -(b + c)
Lúc đó M = (-1) + (-1) + (-1) + (-1) = -4
Cho \(\frac{a}{b}=\frac{c}{d}\left(b,d#0\right).\)Chứng minh
\(\frac{a}{a-b}=\frac{c}{c-d}\)
Giúp mik với nhé! Mình tick cho.Thank you.
ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
Cảm ơn bạn nhưng mình đang muốn tìm cách khác giải rõ hơn.
Bài của bạn dưới như cứt, đó là lí thuyết.
Đặt a/b = c/ d = k
Suy ra: a= k x b
c = k x d
a/a-b= k.b/kb-b = k.b/b(k-1) = k/k-1 (1)
c/c-d= k.d/k.d-d = k.d/d(k-1) = k / k-1 (2)
Từ (1)(2) suy ra: a/a-b = c/c-d
Cho 4 số a,b,c,d > 0
a) Cho $b=\frac{a+c}{2}$ và $c=\frac{2bd}{b+d}$ C/m $\frac{a}{b}=\frac{c}{d}$
b) Từ $\frac{a}{b}=\frac{c}{d}$ C/m $\frac{2015a-b}{a}=\frac{2015c-d}{c}$
Mọi ngừi giúp mk với!!! Giải thích luôn nhé, ai làm đc và giải rõ ràng thì mk tick cho
Cho \(\frac{a}{b}\) =\(\frac{c}{d}\)CMR \(\frac{2017a+2018b}{2017c+2018d}\)tất cả mũ 3=\(\frac{a^3-b^3}{c^3-d^3}\)
Giúp mik nhé sắp thi HK1 rùi!
Cho \(\frac{a}{b}=\frac{c}{d}\)
CMR:\(\frac{a^{2004}-b^{2004}}{a^{2004}+b^{2004}}=\frac{c^{2004}-d^{2004}}{c^{2004}+d^{2004}}\)
CMR:\(\frac{a^{2005}}{b^{2005}}=\frac{\left(a-c\right)^{2005}}{\left(b-d\right)^{2005}}\)
Giúp với ạ(mn đừng giải bằng cách đặt k nha)
giúp mik cái
cho a+b+c+d khác 0 biết
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
tính \(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
+ Ta có
\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{a+b}{\left(a+b\right)+2\left(c+d\right)}=\frac{1}{3}\)
\(\Rightarrow3\left(a+b\right)=\left(a+b\right)+2\left(c+d\right)\)
\(\Rightarrow2\left(a+b\right)=2\left(c+d\right)\Rightarrow a+b=c+d\)
Tương tự ta cũng c/m được
\(b+c=a+d\)
\(\Rightarrow\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)