Tìm x,y thuộc Z thỏa mãn: y^2 + 2xy -7x -12 =0
Cho x y thuộc Z thỏa mãn
`x^2`+ `2xy` + `7x` + `7y` + `2y^2` + `10` = `0`
tìm gtnn và gtln của S= 2x+2y+2023
https://hoc24.vn/cau-hoi/tim-xy-thuoc-z-thoa-man-x2-2xy-7x-y-2y2-10-0.216670050813
tìm các số nguyên x,y thỏa mãn: y^2 + 2xy -7x-12 =0
các bạn trình bày ra giúp mình nhé
1.Tìm (x;y) thuộc Z thỏa mãn:
y2 + 2xy - 7x -12 = 0
2. Phân tích đa thức thành nhân tử:
a) x8 + x2 +1
b) x4 +2y2
\(1.y^2+2xy-7x-12=0\Leftrightarrow4y^2+8xy-28x-48=0\)
\(\left(2y\right)^2-7^2+4x\left(2y-7\right)+1=\left(2y-7\right)\left(2y+7+4x\right)=-1\)
\(\hept{\begin{cases}2y-7=-+1\\2y+7+2x=+-1\end{cases}}\)vo nghiem nguyên
bn ơi mik vẫn tìm đc x,y mờ.
x=-3 , y=2
Tìm các số x,y thuộc Z thỏa mãn:
\(2x^2+2xy-x-y-3=0\)
2x2+2xy-x-y-3=0
suy ra (2x2+2xy)-(x+y)=3
suy ra 2x(x+y)-(x+y)=3
suy ra (x+y) .(2x-1) =3
vì x, y nguyên nên x+y nguyên, 2x-1 nguyên
x+y, 2x-1 thuộc ước nguyên của 3
ta có bảng sau
2x-1 | 1 | -1 | 3 | -3 |
x+y | 3 | -3 | 1 | -1 |
x | 1 | 0 | 2 | -1 |
y | 2 | -3 | -1 | 0 |
Vậy (x,y) thuộc { (1;2); (0;-3); (2;-1); (-1;0)}
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho 2 số x, y thỏa mãn: 2x2 + 7x + 7y +2xy + y2 + 12 =0
Tìm min, max của biểu thức P= x+ y+ 2
\(2x^2+7x+7y+2xy+y^2+12=0\)
\(\Leftrightarrow\left(x^2+y^2+4+2\left(xy+2x+2y\right)\right)+3\left(x+y+2\right)+2=-x^2\)
\(\Leftrightarrow\left(x+y+2\right)^2+3\left(x+y+2\right)+2=-x^2\)
\(\Leftrightarrow P^2+3P+2=-x^2\le0\)
\(\Leftrightarrow-2\le P\le-1\)
giúp mik vs ạ!!!
Cho x,y thỏa mãn: x^2 + 2y^2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y