Tìm các số nguyên x và y sao cho :\(20\cdot y^2-6\cdot x\cdot y=150-15\cdot x\)
Tìm Đa Thức M,N
a, \(3\cdot X^2\cdot y+M-X\cdot Y=10\cdot X^2\cdot Y-2\cdot X\cdot Y\)
b, \(\left(6\cdot X\cdot Y-5\cdot Y^2\right)-N=X^2-2\cdot X\cdot Y+4\cdot Y^2\)
a, 3.x2.y + M - x.y=10x2y - 2xy
(3 x2y-xy) +M= 10x2y -2xy
M=10x2y-2xy+( 3x2y -xy)
M=(10x2y+3x2y)-(2xy+xy)
M=13 x2y-3xy
b,(6xy-5y2)-N=x2-2xy+4 y2
N= 6xy -5y2-( x2-2xy+4y2)
N= 6xy -5y2-x2 +2xy -4y2
N= (6xy +2xy)- (5y2+4y2)-x2
N= 8xy -9y2-x2
hok tốt
boy with luv
kt
Tìm tất cả các bộ ba số nguyên dương thỏa mãn hệ phương trình :
\(\hept{\begin{cases}2\cdot x^{2010}=y^6+z^6\\2\cdot y^{2010}=z^6+x^6\\2\cdot z^{2010}=x^6+y^6\end{cases}}\)
Cho x,y,x là các số thỏa mãn xyz=2016
CMR: \(\frac{2016\cdot x}{x\cdot y+2016\cdot x+2016}+\frac{y}{y\cdot z+y+2016}+\frac{z}{x\cdot z+z+1}=1\)
\(\frac{2016.x}{xy+2016x+2016}+\frac{y}{yz+y+2016}+\frac{z}{xz+z+1}\)= \(\frac{2016x}{xy+2016x+1}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{xxyz+xyz+xy}\) = \(\frac{2016x}{xy+2016x+xyz}+\frac{xy}{xyz+xy+2016x}+\frac{xyz}{2016x+xyz+xy}\)
=\(\frac{2016x+xy+xyz}{2016x+xy+xyz}=1\)
Tính N=\(x^4+2\cdot x^3\cdot y-2\cdot x^3+x^2\cdot y^2-2\cdot x^2\cdot y-x\cdot\left(x+y\right)+2\cdot x+3\)biết x+y-2=0
tính giá trị phân thức
\(A=\frac{3\cdot x-2\cdot y}{3\cdot x+2\cdot y}\)
biết 9*x2+4*y2=20*x*y và 2*y<3*x<0
\(3\cdot X^2\cdot Y+M-6\cdot X\cdot Y=10\cdot X^2Y-2\cdot X\cdot Y\)
Thu gọn các đơn thức sau, xác định hệ số, phần biến và bậc của đơn thức
A=\(\left(\dfrac{-3}{7}\cdot x^3\cdot y^2\right)\cdot\left(\dfrac{-7}{9}\cdot y\cdot z^2\right)\cdot\left(6\cdot x\cdot y\right)\)
B= \(-4\cdot x\cdot y^3\cdot\left(-x^2\cdot y\right)^3\cdot\left(-2\cdot x\cdot y\cdot z^3\right)^2\)
HELP ME
\(A=\left(\dfrac{-3}{7}.x^3.y^2\right).\left(\dfrac{-7}{9}.y.z^2\right).\left(6.x.y\right)\)
\(A=\left(\dfrac{-3}{7}x^3y^2\right).\left(\dfrac{-7}{9}yz^2\right).6xy\)
\(A=\left(\dfrac{-3}{7}.\dfrac{-7}{9}.6\right).\left(x^3.x\right)\left(y^2.y.y\right).z^2\)
\(A=2x^4y^4z^2\)
\(B=-4.x.y^3\left(-x^2.y\right)^3.\left(-2.x.y.z^3\right)^2\)
\(B=\left[\left(-4\right).\left(-2\right)\right].\left(x.x^6.x^2\right)\left(y^3.y^3.y^2\right)\left(z^6\right)\)
\(B=8x^7y^{y^8}z^6\)
Bài 1: Tìm x,y:
\(\frac{2\cdot x+1}{5}=\frac{3\cdot y-2}{7}=\frac{2\cdot x+3\cdot y-1}{6\cdot x}\)
Cho \(x,y\in R\) thoả mãn:
\(x^3+y^3-6\cdot\left(x^2+y^2\right)+13\cdot\left(x+y\right)-20=0\)
Tính \(A=x^3+y^3+12\cdot x\cdot y\)