Những câu hỏi liên quan
NN
Xem chi tiết
2T
1 tháng 9 2019 lúc 8:14

\(a+c=2b\Rightarrow2bd=ad+cd=c\left(b+d\right)=bc+cd\)

\(\Rightarrow ad=bc\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

Lúc đó: \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=2\left(\frac{10.bk+dk}{10b+d}\right)^2-\left(\frac{bk}{b}\right)^2\)

\(=2k^2-k^2=k^2\)(1)

và \(\left(\frac{c}{d}\right)^2=\left(\frac{dk}{d}\right)^2=k^2\)(2)

Từ (1) và (2) suy ra \(2\left(\frac{10a+c}{10b+d}\right)^2-\left(\frac{a}{b}\right)^2=\left(\frac{c}{d}\right)^2\)(đpcm)

Bình luận (0)
KN
Xem chi tiết
H24
26 tháng 7 2019 lúc 8:52

Bạn ơi bạn vô câu hỏi tương tự xem nhé

Học tốt

Bình luận (0)
H24
26 tháng 7 2019 lúc 8:54

Tham khảo nhé!

>>https://olm.vn/hoi-dap/detail/80507618602.html

Bình luận (0)
H24
26 tháng 7 2019 lúc 9:06

#)Giải :

Ta có : \(c\left(b+d\right)=2bd\Rightarrow bc+cd=2bd\Rightarrow\frac{bc+cd}{a+c}=\frac{2bd}{2b}=d\)

\(\Rightarrow bc+cd=ad+cd\Rightarrow bc=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\hept{\begin{cases}\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\left(\frac{a+c}{b+d}\right)^8=\frac{a^8}{b^8}\\\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8=\frac{a^8}{b^8}=\frac{c^8}{d^8}=\frac{a^8+c^8}{b^8+c^8}\end{cases}}\)

\(\Rightarrow\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+b^8}{c^8+d^8}\left(đpcm\right)\)

Bình luận (1)
LL
Xem chi tiết
TH
13 tháng 5 2017 lúc 23:13

Từ c(b+d)=2bd=>bc+cd=2bd

Ta lại có             a+c =2b

Lấy vế chia vế được :\(\frac{bc+cd}{a+c}=\frac{2bd}{2b}=\)\(d\)

=>bc+cd=ad+cd=>bc=ad=>\(\frac{a}{b}=\frac{c}{d}\)

+ , \(\frac{a}{b}=\frac{c}{d}\)\(\frac{a+c}{b+d}\)=> \(\left(\frac{a+c}{b+d}\right)^8=\left(\frac{a}{b}\right)^8\)\(\frac{a^8}{b^8}\) (1)

\(\frac{a}{b}=\frac{c}{d}\)=> \(\left(\frac{a}{b}\right)^8=\left(\frac{c}{d}\right)^8\)<=>\(\frac{a^8}{b^8}=\frac{c^8}{d^8}\)=\(\frac{a^8+c^8}{b^8+d^8}\) (2)

Từ (1) và (2) ta suy ra : \(\left(\frac{a+c}{b+d}\right)^8=\frac{a^8+c^8}{b^8+d^8}\) ( đpcm)

Bình luận (0)
TH
Xem chi tiết
TH
8 tháng 11 2019 lúc 14:13

Các ban ơi vào giúp mình nhé : Bạn Vũ Minh Tuấn ,Nguyex Việt Lâm , Nguyễn Văn Đạt , Băng Băng 2k6 , và thầy Akai Haruma vào giúp em với mình với ạ !!!

Bình luận (0)
 Khách vãng lai đã xóa
TK
Xem chi tiết
NR
24 tháng 10 2017 lúc 21:02

Thay a+c=2b vào 2bd=c(b+d) ta có:

(a+c)d=cd+cb

<=> ad+cd=cd+cb

<=> ad=cb

<=> \(\dfrac{a}{b}=\dfrac{c}{d}\)

Bình luận (0)
NQ
Xem chi tiết
LD
28 tháng 9 2015 lúc 19:48

câu hỏi tương tự nha bạn.

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
ZZ
11 tháng 3 2020 lúc 15:49

Đề sai rồi thì phải ak

\(\left(a+c-2b\right)^{2020}+\left|2bd-cd-cb\right|^{2019}=0\) nhé !

\(\Leftrightarrow a+c-2b=0;2bd-cd-cb=0\)

\(\Leftrightarrow a+c=2b;2bd-cd-cb=0\)

\(\Leftrightarrow\left(a+c\right)d-cd-cb=0\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2+c^2}{b^2+d^2}\)  ( đpcm )

Bình luận (0)
 Khách vãng lai đã xóa
UN
Xem chi tiết
NC
Xem chi tiết
HN
24 tháng 8 2021 lúc 12:46

\(a+c=2b\) (*)

\(2bd=c\left(b+d\right)\)(**)

Thế (*) vào (**)

\(\left(a+c\right)d=c\left(b+d\right)\)

Theo tính chất phân phối ta có:

\(ad+cd=cb+cd\)

\(\Leftrightarrow ad=cb\)

\(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)

Bình luận (0)
 Khách vãng lai đã xóa