Những câu hỏi liên quan
H24
Xem chi tiết
NT
17 tháng 2 2015 lúc 19:30

Huyền hỏi 2 bài liên tiếp à viết nhanh thế

Bình luận (0)
SV
17 tháng 2 2015 lúc 20:43

Các dạng bài này đc giải rất nhiều sao bạn ko coi thế?

Bình luận (0)
NQ
Xem chi tiết
H24
23 tháng 8 2023 lúc 20:04

Để tìm dư của phép chia đa thức f(x) cho (x^2 + 1)(x - 2), chúng ta cần sử dụng định lý dư của đa thức. Theo định lý dư của đa thức, nếu chia đa thức f(x) cho đa thức g(x) và được dư đa thức r(x), thì ta có: f(x) = q(x) * g(x) + r(x) Trong trường hợp này, chúng ta biết rằng f(x) chia cho x - 2 dư 7 và chia cho x^2 + 1 dư 3x + 5. Vì vậy, chúng ta có các phương trình sau: f(x) = q(x) * (x - 2) + 7 f(x) = p(x) * (x^2 + 1) + (3x + 5) Để tìm dư của phép chia f(x) cho (x^2 + 1)(x - 2), ta cần tìm giá trị của r(x). Để làm điều này, chúng ta cần giải hệ phương trình trên. Đầu tiên, chúng ta sẽ giải phương trình f(x) = q(x) * (x - 2) + 7 để tìm giá trị của q(x). Sau đó, chúng ta sẽ thay giá trị của q(x) vào phương trình f(x) = p(x) * (x^2 + 1) + (3x + 5) để tìm giá trị của p(x) và r(x). Nhưng trước tiên, chúng ta cần biết đa thức f(x) là gì. Bạn có thể cung cấp thông tin về đa thức f(x) không?

Bình luận (0)
AA
Xem chi tiết
AP
1 tháng 5 2021 lúc 7:33

quá đơn giản

Bình luận (0)
 Khách vãng lai đã xóa
AA
13 tháng 5 2021 lúc 21:32

đơn giản thì trả lời đi , fly color à bạn :))) 

Bình luận (0)
 Khách vãng lai đã xóa
BQ
Xem chi tiết
ND
7 tháng 11 2018 lúc 22:34

Gọi thương của phép chia f(x) cho x là p(x)

        thương của phép chia f(x) cho x-1 là q(x)

       Thương và dư của phép chia f(x) cho x(x-1) là:h(x) và r(x)

\(\Rightarrow\hept{\begin{cases}f\left(x\right)=x.p\left(x\right)+1\left(1\right)\\f\left(x\right)=\left(x-1\right).q\left(x\right)+2\left(2\right)\\f\left(x\right)=x.\left(x-1\right).h\left(x\right)+r\left(x\right)\left(3\right)\end{cases}}\)

Xét biểu thức (3)

Do đa thức chia x.(x-1) có bậc là 2 nên r(x) có bậc <2

=> r(x) có dạng ax+b

=>f(x)=x.(x-1).h(x)+ax+b (4)

Do (4) đúng với mọi x=>(4) đúng với x=0,x=1

Với x=0 thay vào (4) ta được

f(0)=0.(0-1).h(0)+a.0+b

=> f(0)=b (5)

Với x=1 thay vào (4) ta được

f(1)=1.(1-1).h(1)+a.1+b

=>f(1)=a+b (6)

Lại có :từ(1) => f(0)=0.p(0)+1

                    =>f(0)=1 (7)

           Từ (2) => f(1)=(1-1).q(1)+2

                     => f(1)=2(8)

Từ (5),(7)=>b=1

Từ (6),(8)=>a+b=2

Suy ra a+b-b=2-1

=>a=1

=>ax+b=x+1

Vậy dư của đa thức f(x) cho x.(x-1) là x+1

Tk mk nha!!!!

*****Chúc bạn học giỏi*****

Bình luận (0)
TH
Xem chi tiết
HH
28 tháng 10 2020 lúc 21:32

600000000<1

Bình luận (0)
 Khách vãng lai đã xóa
TH
28 tháng 10 2020 lúc 21:45

Cho mình xin cách làm đi

Bình luận (0)
 Khách vãng lai đã xóa
LD
28 tháng 10 2020 lúc 21:50

Nó là định lí Bézout đấy bạn ^^

Định lí Bézout : Phần dư trong phép chia đa thức f(x) cho nhị thức g(x) = x - a là một hằng số bằng f(a)

Chứng minh : Theo định lí cơ bản ta có : f(x) = ( x - a ).P(x) + R(x) (1)

Ở đây, g(x) = x - a có bậc là bậc nhất mà bậc của dư R(x) phải nhỏ hơn bậc của g(x), vậy R(x) phải là một hằng số, thay x = a trong đẳng thức (1) ta có : f(a) = ( a - a ).P(a) + R => R = f(a)

Hệ quả : Nếu a là nghiệm của f(x) thì f(x) chia hết cho x - a

Ta dùng hệ quả của định lí Bézout để phân tích đa thức thành nhân tử khi đã biết một nghiệm

Bình luận (0)
 Khách vãng lai đã xóa
BB
Xem chi tiết
TT
15 tháng 1 2021 lúc 19:40

\(x^2-5x+6=\left(x-2\right)\left(x-3\right)\)

Giả sử \(f\left(x\right)\) chia cho \(x^2-5x+6\) được thương là\(Q\left(x\right)\)  và dư \(ax+b\)

=> \(f\left(x\right)=Q\left(x\right).\left(x-2\right)\left(x-3\right)+ax+b\)

Có \(f\left(x\right)\) chia cho x - 3 dư 7 ; chia cho x - 2 dư 5

=> \(\left\{{}\begin{matrix}f\left(3\right)=7\\f\left(2\right)=5\end{matrix}\right.\) 

=> \(\left\{{}\begin{matrix}3a+b=7\\2a+b=5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)

=> \(f\left(x\right)\)chia cho \(x^2-5x+6\) dư 2x + 1

Bình luận (0)
H24
15 tháng 1 2021 lúc 19:46

Giả sử đa thức bị chia là m (x)

Gia sử  thương là : q( x )

Vì đa thức chia có bậc là 2 , Suy ra thương có bậc là 1

Suy ra , ta có : m( x ) =( x2 - 5x + 6 )                 q( x ) = ax + b

Đi tìm X

x2 - 5x + 6 = 0 

x2 - 2x - 3x + 6 = 0

 x( x - 2) - 3(x - 2) = 0

 ( x - 2)( x - 3) = 0

Vậy  x = 2 hoặc x = 3

Ta có  giả thiết f( x ) chia cho x - 2 dư 5 ,từ đó ta được :

f( 2 ) = 5 

-> 2a + b = 5 ( 1)

Ta lại có giả thiết f( x ) chia cho x - 3 dư 7 ,Từ đó  ta được :

f( 3 ) = 7

-> 3a + b = 7 ( 2)

Từ ( 1  và  2) suy ra : a = 2 ; b = 1

Suy ra : f( x ) = ( x2 - 5x + 6 )      Thay số  q( x ) = 2x + 1

Vậy dư là 2x +1 

Bình luận (0)
NT
Xem chi tiết
PT
Xem chi tiết
PH
7 tháng 10 2018 lúc 16:09

Vì đa thức chia bậc 2 nên đa thức dư có bậc 1 và có dạng ax + b

Đặt \(f\left(x\right)=\left(x^2-2x-3\right)O\left(x\right)=\left(x+1\right)\left(x-3\right)O\left(x\right)+ax+b\)(3)

      \(f\left(x\right)=\left(x+1\right)Q\left(x\right)-45\) (1)

      \(f\left(x\right)=\left(x-3\right)H\left(x\right)-165\) (2)

Thay lần lượt x = -1 và x = 3 vào (1) và (2), ta có:

\(\hept{\begin{cases}f\left(-1\right)=-45\\f\left(3\right)=-165\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}-a+b=-45\\3a+b=-165\end{cases}}\)(dựa vào (3))

\(\Rightarrow\hept{\begin{cases}4a=-120\\-a+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\-\left(-30\right)+b=-45\end{cases}\Rightarrow}\hept{\begin{cases}a=-30\\b=-75\end{cases}}\)

Vậy f(x) chia \(x^2-2x-3\)dư \(ax+b=-30x-75\)

Chúc bạn học tốt.

Bình luận (0)
DH
Xem chi tiết
NT
Xem chi tiết
NL
1 tháng 9 2018 lúc 21:07

1) 

Đặt \(f\left(x\right)=ax^4+bx^3+cx^2+dx+e.\)( a khác 0 )

Ta có:

\(f\left(1\right)=a+b+c+d+e=0\)                                            (1)

\(f\left(2\right)=16a+8b+4c+2d+e=0\)                              (2)

\(f\left(3\right)=81a+27b+9c+3d+e=0\)                           (3)

\(f\left(4\right)=256a+64b+16c+4d+e=6\)                      (4)

\(f\left(5\right)=625a+125b+25c+5d+e=72\)                (5)

\(A=f\left(2\right)-f\left(1\right)=15a+7b+3c+d=0\)

\(B=f\left(3\right)-f\left(2\right)=65a+19b+5c+d=0\)

\(C=f\left(4\right)-f\left(3\right)=175a+37b+7c+d=6\)

\(D=f\left(5\right)-f\left(4\right)=369a+61b+9c+d=72-6=66\)

\(E=B-A=50a+12b+2c=0\)

\(F=C-B=110a+18b+2c=6\)

\(G=D-C=194a+24b+2c=66-6=60\)

Tiếp tục lấy H=F-E; K=G-F; M=H-K

Ta tìm được a

Thay vào tìm được b,c,d,e

Bình luận (0)
H24
2 tháng 9 2018 lúc 8:15

1. gọi đa thức cần tìm là f(x) =a.x^4+b.x^3+c.x^2+dx+e

có f(1)=f(2)=f(3) = 0 nên x=1,2,3 la nghiệm của f(x) = 0 vậy f(x) có thể viết dưới dạng f(x) = (x-1)(x-2)(x-3)(mx+n) 

thay f(4)=6 và f(5)=72 tìm được m =2 và n= -7 

Vậy đa thức f(x) =(x-1)(x-2)(x-3)(2x-7) => e = (-1).(-2).(-3).(-7) = 42

Với x=2010 thì (a 2010^4+b.2010^3+c.2010^2+d.2010 ) luôn chia hết 10 vậy số dư f(2010) chia 10 = số dư d/10 = 2 (42 chia 10 dư 2).

2. Thiếu dữ liệu 

3. đa thức f(x) chia đa thức (x-3) có số dư là 2 =>bậc f(x) = bậc (x-3)=1 và f(x) = m.(x-3) +2=mx+2-3m (1)

...........................................(x+4)...................9..........................................f(x) = n(x+4) + 9=nx+4n+9 (2)

để (1)(2) cùng xảy ra thì m=n và (2-3m)=(4n+9) => m = n = -1 khi đó đa thức f(x) = -x +5 

Không hiếu dữ liệu cuối f(x) chia 1 đa thức bậc 2 lại có thương là 1 đa thức bậc 2? => vô lý 

Bình luận (0)