Những câu hỏi liên quan
DS
Xem chi tiết
HV
Xem chi tiết
AH
13 tháng 7 2023 lúc 0:01

Lời giải:
1. Áp dụng BĐT Cô-si

$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$

$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$ 

Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$

$\Leftrightarrow x=0$ hoặc $x=2$

 

Bình luận (0)
AH
13 tháng 7 2023 lúc 0:03

2.

Áp dụng BĐT Cô-si:

$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$

$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)

Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
 

Bình luận (0)
AH
13 tháng 7 2023 lúc 0:05

3.

Áp dụng BĐT Cô-si:

$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$

$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)

Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$

Bình luận (0)
HN
Xem chi tiết
HT
Xem chi tiết
ND
23 tháng 12 2018 lúc 9:52

dạng bài này bn có thể dùng miền giá trị hàm để tách nhé(cái này chỉ làm nháp thôi)

(Chú ý  phương trình bậc 2 :ax2+bx+c=0.Phương trình có \(\Delta=b^2-4ac\)(\(\Delta\)là biệt số Đen-ta) 

Nếu \(\Delta\ge0\)thì pt có 2 nghiệm 

Nếu \(\Delta< 0\)thì pt vô nghiệm

         Bài làm

Gọi m là 1 giá trị của \(\frac{x^2-x+1}{x^2+x+1}\)

Ta có m= \(\frac{x^2-x+1}{x^2+x+1}\)

=>m(x2+x+1)=x2-x+1

=>mx2+mx+m-x2+x-1=0 =>(m-1)x2 +(m+1)x+m-1=0(1)

Nếu m=0..............(th này ko phải xét)

Nếu m\(\ne0\)thì pt (1) có nghiệm khi \(\Delta=b^2-4ac\ge0\)

\(\Leftrightarrow\left(m+1\right)^2-4.\left(m-1\right)\left(m-1\right)\ge0\)

\(\Leftrightarrow m^2+2m+1-4m^2+8m-4\ge0\)

\(\Leftrightarrow-3m^2+10m-3\ge0\)\(\Leftrightarrow3m^2-10m+3\le0\)

\(\Leftrightarrow\left(m-3\right)\left(3m-1\right)\le0\)

=> có 2 TH 

TH1: m-3\(\le0\)\(3m-1\ge0\)

=>\(\hept{\begin{cases}m\le3\\m\ge\frac{1}{3}\end{cases}\Leftrightarrow\frac{1}{3}\le m\le3}\)(t/m)(*)

TH2\(\hept{\begin{cases}m-3\ge0\\3m-1\le0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ge3\\m\le\frac{1}{3}\end{cases}}}\)(vô lí)(**)

Từ (*),(**) =>\(\frac{1}{3}\le m\le3\)

=>\(\hept{\begin{cases}Min_P=\frac{1}{3}\\Max_P=3\end{cases}}\)

Từ đây bạn tách ngược từ dưới lên.

Nếu ko biết thì nhắn tin cho mk ,mk tách cho

tk mk nha

Bình luận (0)
H24
11 tháng 2 2019 lúc 20:56

tôi đâu có rảnh

Bình luận (0)
TT
Xem chi tiết
CD
Xem chi tiết
DH
5 tháng 2 2021 lúc 21:30

\(\frac{1}{x^2}+\frac{1}{9y^2}\ge2\sqrt{\frac{1}{x^2}.\frac{1}{9y^2}}=\frac{2}{3xy}=\frac{2}{3}\)

Dấu \(=\)xảy ra khi \(\hept{\begin{cases}\frac{1}{x^2}=\frac{1}{9y^2}\\xy=1\end{cases}}\Rightarrow\hept{\begin{cases}x=\sqrt{3}\\y=\frac{1}{\sqrt{3}}\end{cases}}\).

Bình luận (0)
 Khách vãng lai đã xóa
CR
Xem chi tiết
NQ
21 tháng 11 2017 lúc 21:43

|3x-7|+|3x-2|+8 >= 5+8 = 13 

Dấu "=" xảy ra <=> 3/2 <= x <= 7/3

k mk nha

Bình luận (0)
CR
21 tháng 11 2017 lúc 21:44

tiếp đi bạn 

Bình luận (0)
LA
Xem chi tiết
DN
Xem chi tiết
AN
22 tháng 3 2022 lúc 10:58

Đặt \(2y=a\)thì ta được

\(P=\frac{1}{x^2+a^2}+\frac{1}{xa}=\left(\frac{1}{x^2+a^2}+\frac{1}{2xa}\right)+\frac{1}{2xa}\)

\(\ge\frac{4}{x^2+a^2+2ax}+\frac{2}{\left(x+a\right)^2}=\frac{6}{\left(x+a\right)^2}\ge\frac{6}{4}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa