tìm GTNN của \(\frac{1}{x^2+x-3}\)
1. Tìm GTLN của P=1+\(\frac{1}{x}\)với x≥1
2. Cho x>0, tìm GTNN của P=x+\(\frac{1}{x}\)
3. Cho x>0, tìm GTNN của biểu thức:
\(A=\frac{x^2+x+4}{x+1}\)
4. Cho x>0. Tìm GTNN của P=x2+\(\frac{2}{x}\)
5.Cho x>0. Tìm GTNN của 2x+\(\frac{1}{x^2}\)
6. Tìm GTNN của P=x2-x+\(\frac{1}{x}\)+4 với x>0
7. Cho x≥1. Tìm GTNN của: \(y=\frac{x+2}{x+1}\)
8.Tìm GTLN và GTNN của: \(A=\frac{2x}{x^2+1}\)
1. x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)
2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)
3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)
áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)
x=1 nhe nhap minh di ma ket ban voi minh nhe
Tìm GTNN của biểu thức B = x(x-3)(x+1)(x+4)
Tìm GTNN của A = \(\frac{x^2-4x+1}{x^2}\)
Tìm cả GTNN và GTLN của các biểu thức sau:
B = \(\frac{1}{2+\sqrt{4-x^2}}\)
C = \(\frac{1}{3-\sqrt{1-x^2}}\)
D = \(\sqrt{-x^2+4x+5}\)
tìm GTNN của : |3x-7|+|3x-2|+8
cho x-y =2 . Tìm GTNN của biểu thức B= |2x+1|=|2y+1|
tìm GTLN của : x+\(\frac{1}{2}\)-|x-\(\frac{2}{3}\)|
|3x-7|+|3x-2|+8 >= 5+8 = 13
Dấu "=" xảy ra <=> 3/2 <= x <= 7/3
k mk nha
Bài 1: Cho x+2y=1. Tìm GTNN của A=x2+2y2
Bài 2: Cho xy=1. Tìm GTNN của B=|x+y|
Bài 3: Tìm GTNN của
a) A=\(\frac{2x^2-16x+41}{x^2-8x+22}\)
b) B=\(\frac{x^2-4x+1}{x^2}\)
Bài 1 bạn phải dùng BDT Bunhiacopxki : ( ax +by )2 <= ( nhỏ hơn bằng ) ( a2 + b2 )( x2 + Y2 )
Ở đây hệ số của x là 1 nên a là 1.
Ta có: ( x + 2y )2 <= ( 12 + (căn2)2 ) ( x2 + ( căn 2 )2y2 )
=> 1 <= 3 ( x2 + 2y2 )
=> x2 + 2y2 >= 1/3
a, Cho x,y,z >0 thỏa điều kiện x+y+z=3. Tìm GTNN của A=\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\)
b, cho x >1 , y>1. Tìm GTNN của A=\(\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
1. Tìm GTNN của A= \(\frac{x^2-2x+2018}{x^2}\)
2. Tìm GTLN của B=\(\frac{3x^2+9x+17}{3x^2+9x+7}\)
3. Tìm GTLN của M= \(\frac{3x^2+14}{x^2+4}\)
4. Cho x+y=2. Tìm GTNN của A= \(x^3+y^3+2xy\)
1) \(A=\frac{2018x^2-2.2018x+2018^2}{2018x^2}=\frac{\left(x-2018\right)^2+2017x^2}{2018x^2}=\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\)
vì \(\frac{\left(x-2018\right)^2}{2018x^2}\ge0\Rightarrow\frac{\left(x-2018\right)^2}{2018x^2}+\frac{2017}{2018}\ge\frac{2017}{2018}\)
dấu = xảy ra khi x-2018=0
=> x=2018
Vậy Min A=\(\frac{2017}{2017}\)khi x=2018
2) \(B=\frac{3x^2+9x+17}{3x^2+9x+7}=\frac{3x^2+9x+7+10}{3x^2+9x+7}=1+\frac{10}{3x^2+9x+7}=1+\frac{10}{3.x^2+9x+7}\)
\(=1+\frac{10}{3.\left(x^2+9x\right)+7}=1+\frac{10}{3.\left[x^2+\frac{2.x.3}{2}+\left(\frac{3}{2}\right)^2\right]-\frac{9}{4}+7}=1+\frac{10}{3.\left(x+\frac{9}{2}\right)^2+\frac{1}{4}}\)
để B lớn nhất => \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\)nhỏ nhất
mà \(3.\left(x+\frac{3}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\)vì \(3.\left(x+\frac{3}{2}\right)^2\ge0\)
dấu = xảy ra khi \(x+\frac{3}{2}=0\)
=> x=\(-\frac{3}{2}\)
Vậy maxB=\(41\)khi x=\(-\frac{3}{2}\)
3) \(M=\frac{3x^2+14}{x^2+4}=\frac{3.\left(x^2+4\right)+2}{x^2+4}=3+\frac{2}{x^2+4}\)
để M lớn nhất => x2+4 nhỏ nhất
mà \(x^2+4\ge4\)(vì x2 lớn hơn hoặc bằng 0)
dấu = xảy ra khi x2 =0
=> x=0
Vậy Max M\(=\frac{7}{2}\)khi x=0
ps: bài này khá dài, sai sót bỏ qua =))
ê viết lộn dòng này :v
\(MinA=\frac{2017}{2018}\)nha
Tìm GTNN của các biểu thức sau:
1) G= $\frac{x^2}{x-1}$ với x>1
2) H= x+$\frac{1}{x}$ với x$\geq$2
3) K= $x^{2}$ +$\frac{1}{x}$ với x $\geq$3
Lời giải:
1. Áp dụng BĐT Cô-si
$G=\frac{x^2}{x-1}=\frac{(x^2-1)+1}{x-1}=x+1+\frac{1}{x-1}$
$=(x-1)+\frac{1}{x-1}+2$
$\geq 2\sqrt{(x-1).\frac{1}{x-1}}+2=2+2=4$
Vậy $G_{\min}=4$. Giá trị này đạt tại $x-1=\frac{1}{x-1}$
$\Leftrightarrow x=0$ hoặc $x=2$
2.
Áp dụng BĐT Cô-si:
$H=x+\frac{1}{x}=(\frac{x}{4}+\frac{1}{x})+\frac{3}{4}x$
$\geq 2\sqrt{\frac{x}{4}.\frac{1}{x}}+\frac{3}{4}x$
$=1+\frac{3}{4}x\geq 1+\frac{3}{4}.2=\frac{5}{2}$ (do $x\geq 2$)
Vậy $H_{\min}=\frac{5}{2}$. Giá trị này đạt tại $x=2$
3.
Áp dụng BĐT Cô-si:
$K=x^2+\frac{1}{x}=(\frac{x^2}{54}+\frac{1}{2x}+\frac{1}{2x})+\frac{53}{54}x^2$
$\geq 3\sqrt[3]{\frac{x^2}{54}.\frac{1}{2x}.\frac{1}{2x}}+\frac{53}{54}x^2$
$=\frac{1}{2}+\frac{53}{54}x^2\geq \frac{1}{2}+\frac{53}{54}.3^2=\frac{28}{3}$ (do $x\geq 3$)
Vậy $K_{\min}=\frac{28}{3}$ khi $x=3$
câu1:tìm GTNN của: \(C=\frac{3-2x}{\sqrt{1-x^2}}\)
câu2:tìm GTNN của: \(Q=\frac{x+16}{\sqrt{x}+3}\)
câu3:cho x,y>0;x+y\(\le\) 2 . tim GTNN của \(Q=\frac{20}{x^2+y^2}+\frac{11}{xy}\)
Bài 1:Cho biểu thức:
\(A=\frac{2}{x-1}+\frac{2\left(x+1\right)}{x^2+x+1}+\frac{x^2-10x+3}{x^3-1}\)
a)Tìm đkxđ của A
b)rút gọn A
c)tìm GTNN của A
Tìm GTNN của B=\(\left|2\frac{1}{2}.x-1\frac{1}{3}\right|+\left(x-1\right)^2\)