Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NH
Xem chi tiết
LC
4 tháng 12 2015 lúc 21:40

Gọi số nguyên tố >3 là a

Ta có:

a2+2015

Vi a​là số chính phương

2015 là hợp số

=>a2+2015 ko thể là số nguyên tố

Vậy a2+2015 ko phải là số ngyen tố

 

 

 

Bình luận (0)
NM
4 tháng 12 2015 lúc 21:38

Cộng vế với vế ta được

1999.( x1+x2 +.....+ x2000) = 1+2+3+....+ 2000

Bình luận (0)
TN
Xem chi tiết
DC
Xem chi tiết
DC
23 tháng 3 2020 lúc 10:06

3 cách nhé mọi người , ai lm đc 3 cách thì mik sẽ cho nhé

Bình luận (0)
 Khách vãng lai đã xóa
H24
23 tháng 3 2020 lúc 16:27

                                                         Bài giải

n là số nguyên tố lớn hơn 3 nên có dạng 3k + 1 ; 3k + 2

Ta có :

Với n = 3k + 1 thì \(n^2+2015=\left(3k+1\right)^2+2015=9k^2+6k+1+2015=9k^2+6k+2016\)

\(=3\left(3k^2+2k+672\right)\text{ }⋮\text{ }3\text{ ( là hợp số )}\)

Với n = 3k + 2 thì \(n^2+2015=\left(3k+2\right)^2+2015=9k^2+12k+4+2015=9k^2+12k+2019\)

\(=3\left(k^2+4k+673\right)\text{ }⋮\text{ }3\text{ ( là hợp số ) }\)

Vậy n là số nguyên tố lớn hơn 3 thì \(n^2+2015\) là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
HT
Xem chi tiết
IS
2 tháng 4 2018 lúc 21:13

Vì n là số nguyên tố lớn hơn 3 nên n2 chia cho 3 dư 1.
=> n2
 có dạng 3k+1
=>n2+2006=3k+1+2006=3k+2007
Vì 3k chia hết cho 3
2007 chia hết cho 3
=> 3k+1+2006 chia hết cho 3
=>n2+2006 chia hết cho 3 nên nó là hợp số

Bình luận (0)
Xem chi tiết
TL
2 tháng 2 2019 lúc 15:56

Do n là số nguyên tố lớn hơn 3

=>n không chia hết cho 3

=>n=3k+1 hoặc a=3k+2   (k khác 0)

Xét n=3k+1

=>n^2+2015=9k^2+2+2015=9k^2+2017 (n không chia hết cho 3) (1)

Xét n=3k+2

=>n^2+2015=9k^2+4+2015=9k^2+2019 (n ko chia het cho 3)  (2)

(1)(2)=>n^2 là số nguyên tố

Bình luận (0)
CA
2 tháng 2 2019 lúc 16:03

Vì n > 3 nên n có dạng 3k+1 và 3k+2.

TH1: nếu n có dạng 3k+1 thì:

n^2+2015= (3k+1)^2+2015=(3k+1).(3k+1)+2015=(3k+1).3k+3k+1+2015=9k^2.3k+3k+2015

Vì 9k.3k chia hết cho 3

3k chia hết cho 3

2015 không chia hết 3

=> n^2+2015 là số nguyên tố.

TH2:nếu n có dạng 3k+2 thì:

n^2+2015=(3k+2)^2+2015=(3k+2).(3k+2)+2015=(3k+2).3k+(3k+2).2+2015=9k^2+6k+6k+4+2015=9k^2+12k+2019

Vì 9k^2 chia hết cho 3

12k chia hết cho3

2019 chia hết cho 3

=>n^2+2015 là hợp số

Vậy nếu n có dang 3k+1 thì n^2+2015 là số nguyên tố.

       nếu n có dạng 3k+2 thì n^2+2015 là hợp số.

k cho mk nha bạn

Bình luận (0)
ND
Xem chi tiết
PT
1 tháng 5 2018 lúc 9:21

- Vì n là số nguyên tố lớn hơn 3 =) n là số lẻ 
Mà n^2 = n.n = số lẻ . số lẻ = số lẻ
Mà 2015 cũng là số lẻ 
=) n^2+2015=số lẻ + số lẻ = số chẵn chia hết cho 2
Vậy n^2+2015 chia hết cho 1 , 2  và chia hết cho chính nó 
=) n^2+2015 nhiều hơn 2 ước =) Là hợp số 

Bình luận (0)
CG
1 tháng 5 2018 lúc 9:22

Vì n là số nguyên tố lớn hơn 3

=> n không chia hết cho 3

=> n2 chia 3 dư 1

=> n2 = 3k + 1 ( k \(\inℕ^∗\))

=> n2 + 2015 = 3k + 1 + 2015 = 3k + 2016

Mà \(\hept{\begin{cases}3k⋮3\\2016⋮3\end{cases}}\)=> n+ 2015 là hợp số.

Bình luận (0)
LN
1 tháng 5 2018 lúc 10:32

vì n là số nguyên tố lớn hơn 3 => n có dạng : 3k +1 hoặc 3k+2

Với n=3k+1 => n\(^2\)+2015= (3k+1)\(^2\)+2015= 9k\(^2\)+6k+1+2015= 9k2+6k+2016 \(⋮\)3 => Là Hợp số

Với n=3k+2 => n2+2015 = (3k+2)2+2015= 9k2+12k+4+2015= 9k2+12k+2019\(⋮\)3 => Là hợp số

Vậy n2+2015 là hợp số

Bình luận (0)
HD
Xem chi tiết
TK
7 tháng 1 2016 lúc 17:52

n>3 =>n=3k+1=>(3k+1)(3k+1)+2015=>9k2+3k+3k+1+2015=>3(3k2+2k)+2016=>3(3k2+2k) và 2016 cùng chia hết cho 3 nên là hợp số 

Vì vậy: n2+2015 là hợp số

Bình luận (0)
NT
7 tháng 1 2016 lúc 17:57

-Vì n là số nguyên tố lớn 3  nên n có dạng 3k+1 và 3k+2 (k\(\in\)N*)

Với n =3k+1:

n2+2015=(3k+1)2+2015

             =(3k+1).(3k+1)+2015

             =3k(3k+1)+(3k+1)+2015

             =9k2+3k+3k+1+2015

            =9k2+6k+2016

Ta có:

9k2 chia hết cho 3

6k chia hết cho 3

2016 chia hết cho 3

=> 9k2+6k+2016 chia hết cho 3

Mà 9k2+6k+2016 > 3

=> 9k2+6k+2016 là hợp số 

=>n2+2015 là hợp số (1)

Với n=3k+2:

n2+2015=(3k+2)2+2015

             =(3k+2).(3k+2)+2015

             =3k(3k+2)+2(3k+2)+2015

             =9k2+6k+6k+4+2015

            =9k2+12k+2019

Ta có:

9k2 chia hết cho 3

12k chia hết cho 3

2019 chia hết cho 3

=> 9k2+12k+2019 chia hết cho 3

Mà 9k2+12k+2019 > 3

=> 9k2+12k+2019 là hợp số

=>n2+2015 là hợp số (2)

Từ (1) và (2) suy ra : n2+2015 là hợp số

Vậy n2+2015 là hợp số

nhớ tick ủng hộ mình !

           

Bình luận (0)
H24
Xem chi tiết