Những câu hỏi liên quan
H24
Xem chi tiết
H24
18 tháng 3 2018 lúc 19:00

1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)] 
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)] 
=n(n+1)(n+2) 
=>S 

Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên. 
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3 
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.

2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1) 

4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4 

ghi dọc cho dễ nhìn: 
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1) 
ad cho k chạy từ 2 đến n ta có: 
1.2.3.4 = 1.2.3.4 
2.3.4.4 = 2.3.4.5 - 1.2.3.4 
3.4.5.4 = 3.4.5.6 - 2.3.4.5 
... 
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n 
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1) 
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn) 
4S = (n-1)n(n+1)(n+2) 

3. 

Bình luận (0)
H24
Xem chi tiết
VA
3 tháng 1 2018 lúc 20:08

Chị dùg cách tính tổng đi

1. Tìm dãy cách đều bao nhiêu

2. Từ công thức tính tổng rồi suy ra

Bình luận (0)
TM
Xem chi tiết
AH
24 tháng 6 2024 lúc 11:24

Đề yêu cầu gì bạn nhỉ?

Bình luận (0)
NL
Xem chi tiết
VK
22 tháng 1 2017 lúc 20:02

Xin lỗi, mk chỉ biết bài 3:

Nhân cả 2 vế với 3 ta có:

3S = 1.2.3 +2.3.3 +3.4.3 +......+ 30.31.3

3S= 1.2.3 +2.3.( 4 - 1 ) +3.4. ( 5 - 2 ) +....+ 30.31. ( 32 - 29 )

3S= 1.2.3 + 2.3.4 - 2.3.1 + 3.4.5 - 3.4.2 +.....+ 30.31.32 - 30.31.29

3S= 30.31.32

S  = 30.31.32 : 3

S  = 9920

  Vậy S = 9920

Bình luận (0)
NL
22 tháng 1 2017 lúc 21:21

cảm ơn bn nhé

Bình luận (0)
NL
22 tháng 1 2017 lúc 22:37

có ai còn thức thì giúp mk làm bài 4 vs nhé.gấp lắm rồi

Bình luận (0)
LG
Xem chi tiết
LG
1 tháng 4 2018 lúc 14:26

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Bình luận (0)
NL
Xem chi tiết
WH
22 tháng 1 2016 lúc 22:04

khoảng cần 3 người trao đổi **** với mình nữa!

Bình luận (0)
PT
Xem chi tiết
PT
13 tháng 9 2020 lúc 20:11

giúp vớiiiiiiiiiiiiiiiiiiiiiiiii

Bình luận (0)
 Khách vãng lai đã xóa
NH
17 tháng 9 2020 lúc 20:38

123456789BFGBJTYT

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
LL
Xem chi tiết
DB
1 tháng 8 2016 lúc 8:28

     1.2 + 2.3 + 3.4+...+n.( n+1)=A

 =>3.A=1.2.(3-0)+2.3.(4-1)+3.4.(5 -2)...+ n.(n+1) . ((n+2) - (n-1))

 =>3.A=1.2.3+2.3.4+3.4.5+...+ (n-1) . n. (n+1)+ n. (n+1). (n+2) - 0.1.2 -1.2.3 -2.3.4 -3.4.5 -...(n-1)n(n+1)

  =>3A=n.(n+1).(n+2)

  => A=n.(n+1).(n+2)\3 

Bình luận (0)
MT
1 tháng 8 2016 lúc 8:29

Đặt A=1.2 + 2.3 + 3.4+...+n.( n+1)

=>3A=1.2.3+2.3.3+3.4.3+...+n.(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n+1)(n+2)-(n-1).n.(n+2)

=n.(n+1)(n+2)-0

=n.(n+1)(n+2)

=>A=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

Bình luận (0)