Những câu hỏi liên quan
H24
Xem chi tiết
TL
16 tháng 4 2020 lúc 17:09

A=5+52+53+....+59+510

=> A=(5+52)+(53+54)+...+(59+510)

=> A=5(1+5)+53(1+5)+....+59(1+5)

=> A=5.6+53.6+....+59.6

=> A=6(5+53+....+59)

=> A chia hết cho 6 (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
NH
16 tháng 3 2024 lúc 16:41

a;

A = 109 + 108 + 107 

A = 107.(102 + 10 + 1)

A = 106.2.5.(100 + 10 + 1)

A = 106.2.5.111

A = 106.2.555 ⋮ 555 (đpcm)

Bình luận (0)
NH
16 tháng 3 2024 lúc 16:48

b;

B = 817 - 279 - 919

B = 914 - 39.99 - 919

B = 914 - 3.38.99 - 919

B = 914 - 3.94.99 - 919

B = 914 - 3.913 - 919

B = 913.(9 - 3 - 96)

B = 913.(9 - 3 - \(\overline{..1}\))

B = 913.(6 - \(\overline{..1}\))

B = 913.\(\overline{..5}\)

B ⋮ 9; B ⋮ 5

\(\in\) BC(9; 5)  = 9.5 = 45

B ⋮ 45 (đpcm)

 

Bình luận (0)
NH
3 tháng 9 2024 lúc 14:16

Bài 2:

A = 5 + 52 + 53 + ... + 599 + 5100 chứ em?

Bình luận (0)
HT
Xem chi tiết
VP
7 tháng 10 2015 lúc 10:17

mình chỉ cho bạn ghi mủ nè nhấn vào x2

Bình luận (0)
PN
25 tháng 10 2023 lúc 12:52

Tổng a có ssh là (8-1):1-1=8

Vì 8:2=4

Đo đó ta nhóm tổng a thành 4 nhóm mỗi nhóm có 2 số hạng 

(5+5²)+(5³+5⁴)+...+(5⁷+5⁸)

5×(1+5)+5³×(1+5)+5⁷×(1+5)

5×6+5³×6+...+5⁷×6

6×(5+5³+...+5⁷)

Vì 6:6 nên a:6

VậyA:6

 

 

 

 

Bình luận (0)
PN
25 tháng 10 2023 lúc 12:53

Đây là chìa hết cho 6

Bình luận (0)
VQ
Xem chi tiết
HT
Xem chi tiết
KT
12 tháng 11 2015 lúc 16:42

Ban "ten to sieu dai yyyyyyyyyyyyyyyyyyyyyyy...." oi! ban dung khoe ten nua. ten dai koa dk j dau  ma khoe.

Bình luận (0)
PM
8 tháng 1 2021 lúc 20:04

A=(1+11+11.1

thôi cậu tự làm dễ mà

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
IS
16 tháng 3 2020 lúc 21:35

\(B=2+2^2+2^3+2^4+...+2^{10}\)

=>\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

=>\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

=>\(B=3\left(2+2^3+...+2^9\right)⋮3\left(đpcm\right)\)

Bình luận (0)
 Khách vãng lai đã xóa

Trả lời:

\(B=2+2^2+2^3+2^4+....2^9+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\) (Phần này là nhóm các lũy thừa có cùng cơ số 2 vào các nhóm sao cho tổng nhóm đầu tiên chia hết cho 3 thì mấy nhóm sau với số số hạng tương tự nhóm 1 thì oke giải tiếp như sau)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^3+...+2^9\right)\)

Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)

=> đpcm

Vậy B chia hết cho 3

#Huyền Anh

Bình luận (0)
 Khách vãng lai đã xóa
NK
Xem chi tiết
H24
16 tháng 3 2020 lúc 21:32

\(B=2+2^2+2^3+2^4+...+2^{10}\)

\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(=2\left(1+2\right)+2^2\left(1+2\right)+...+2^9\left(1+2\right)\)

\(=3\left(2+2^2+...+2^9\right)⋮3\)

\(\Rightarrow B⋮3\)

..

Bình luận (0)
 Khách vãng lai đã xóa
H24
16 tháng 3 2020 lúc 21:32

\(B=2+2^2+2^3+...+2^{10}\)

    =\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

   =\(2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

   =\(2.3+2^3.3+2^5.3+2^7.3+2^9.3\)

  =\(3\left(2+2^3+2^5+2^7+2^9\right)⋮3\)

Vậy \(B⋮3\)

Bình luận (0)
 Khách vãng lai đã xóa
IA
16 tháng 3 2020 lúc 21:32

\(B=2+2^2+2^3+...+2^{10}\)

\(B=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)

\(B=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)

\(B=2\cdot3+2^3\cdot3+...+2^9\cdot3\)

\(B=3\left(2+2^3+...+2^9\right)\)

Vì \(3⋮3\Rightarrow3\left(2+2^3+...+2^9\right)⋮3\)

\(\Rightarrow B⋮3\)

Vậy ...

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
LD
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Bình luận (0)
NN
10 tháng 12 2017 lúc 21:36

Thanks bạn

Bình luận (0)
DL
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
TN
26 tháng 11 2017 lúc 21:24

50+51+52+53+...+52010+52011

= 1+5+52+53+...+52010+52011

=(1+5)+(52+53)+...+(52010+52011)

= (1+5)+52(1+5)+...+52010(1+5)

= (1+5)(1+52+...+52010)

= 6.(1+52+...+52010) chia hết cho 6

=> đpcm

Bình luận (0)