cho A = 1/5 + 2/52 + 3/53 + ..........+10/510 + 11/511 . chứng minh A < 5/16
1.Chứng minh rằng: √2 + √6 +√12 + √20 < 12
2. Cho A=1/5+2/(5^2)+3/(5^3)+......+10/(5^10)+11/(5^11). Chứng minh rằng A < 5/16
Cho A = 1/5 + (2/5)2 + (3/5)3 + ... + (10/5)10 + (11/5)11.Chứng minh A<5/16
Thực hiện phép tính (tính nhanh nếu có thể)
a)3 . 52 + 15 . 22 - 26 : 2
b)53. 2 - 100 : 4 + 23. 5
c)62 : 9 + 50 . 2 - 33 . 33
d)32 . 5 + 23 . 10 - 81 : 3
e)513 : 510 - 25 . 22
f)20 : 22 + 59 : 58
a) \(3.5^2+15.2^2-26\div2\)
= 3.25 + 15.4 - 13
= 75 + 60 - 13
= 135 - 13
= 122
b) \(5^3.2-100\div4+2^3.5\)
= 125.2 - 25 + 8.5
= 250 - 25 + 40
= 225 + 40
= 265
c)\(6^2\div9+50.2-3^3.33\)
= 36 : 9 + 100 - 9.33
= 4 + 100 - 297
= 104 - 297
= -193
d)\(3^2.5+2^3.10-81\div3\)
= 9.5 + 8.10 - 27
= 45 + 80 - 27
= 125 - 27
= 98
e) \(5^{13}\div5^{10}-25.2^2\)
= 53 - 25.4
= 125 - 100
= 25
f) \(20\div2^2+5^9\div5^8\)
= 20 : 4 + 5
= 5 + 5
= 10
Cho A=1 phần 5 +2 phần 5 mũ 2+3 phần 5 mũ 3+...+10 phần 5 mũ 10+11 phần 5 mũ 11.chứng minh A nhỏ hơn 5 phần 16
Cho A=\(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+....+\dfrac{10}{5^{10}}+\dfrac{11}{5^{11}}\). Chứng minh A<\(\dfrac{5}{16}\)
1.Chứng tỏ n+3;2n+5 nguyên tố cùng nhau
2.A=1+5+52+53+...+599. 4+A+1 bình phương
3.Chứng minh rằng tích của 2 chẵn liên tiếp⋮8
1/
Gọi d là ước của n+3 và 2n+5 nên
\(n+3⋮d\Rightarrow2n+6⋮d\)
\(2n+5⋮d\)
\(\Rightarrow2n+6-\left(2n+5\right)=1⋮d\Rightarrow d=1\)
=> n+3 và 2n+5 nguyên tố cùng nhau
2/
\(5A=5+5^2+5^3+5^4+...+5^{100}\)
\(4A=5A-A=5^{100}-1\Rightarrow4A+1=5^{100}=\left(5^{50}\right)^2\) LÀ SỐ CHÍNH PHƯƠNG
3/
Tích của 2 số chẵn liên tiếp là
\(2n.\left(2n+2\right)=4n^2+4n=4n\left(n+1\right)\)
Ta có
\(n\left(n+1\right)\) Là tích của 2 số tự nhiên liên tiếp và là số chẵn
\(\Rightarrow n\left(n+1\right)=2k\)
\(\Rightarrow4n\left(n+1\right)=4.2k=8k⋮8\)
a) Cho A=1+5+52+53+...+52021
Chứng minh A ⋮ 31
b) chứng minh rằng tổng của 4 số tự nhiên không chia hết cho 4
Bài 3 (1điểm): Cho A = 5 + 52 + 53 + … + 5992 Chứng minh rằng: 4A + 5 là một luỹ thừa của 125.
\(A=5+5^2+5^3+...+5^{992}\)
\(\Rightarrow5A=5^2+5^3+5^4+...+5^{993}\)
\(\Rightarrow4A=5A-A=5^2+5^3+5^4+...+5^{993}-5-5^2-5^3-...-5^{992}=5^{993}-5\)
\(\Rightarrow4A+5=5^{993}-5+5=5^{993}=\left(5^3\right)^{331}=125^{331}\) là một lũy thừa của 125
Câu 1 : 1+52+53+54+...+5404:31
Câu 2 : a ) Chứng minh : Trong 3 Số tự nhiên liên tiếp có một số chia hết cho 3
b ) Chứng minh : Trong 5 Số tự nhiên liên tiếp có một số chia hết cho 5