CMR:
P=\(\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}< 1\left(n\inℤ;n\ge3\right)\)
Nhanh gíup mik!(+_+)
1.Cho A =\(\frac{5n-11}{n-2}\left(n\inℤ\right)\)
a. Tìm điều kiện n để A là phân số
b.Tìm n \(\inℤ\)để A có giá trị nguyên
c.Tìm giá trị lớn nhất của A
2.Tìm x
a. \(\frac{3}{4}\times\left(\frac{1}{2}x+\frac{1}{3}\right)-\frac{1}{2}=\frac{2}{3}x-\frac{1}{4}\)
b.\(\frac{2}{3}x-3x+\frac{1}{5}=\frac{3}{2}\left(x-\frac{1}{4}\right)-\frac{3}{2}\)
3.a.Chứng tỏ :
\(\frac{1}{7^2}+\frac{1}{8^2}+..................+\frac{1}{99^2}< \frac{1}{6}\)
b.Chứng tỏ:
\(\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+............+\frac{1}{23}< 3\)
Cho \(n\inℤ^+\). CM \(\frac{1}{2}+\frac{1}{3\sqrt{2}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}< 2\)
Ta có : \(\frac{1}{\sqrt{n}\left(n+1\right)}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)
\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
Áp dụng vào bài toán, ta có :
\(VT< 2\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)
\(=2\left(1-\frac{1}{\sqrt{n+1}}\right)< 2\)
a) \(A=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}\)
b)Cho \(A=\frac{n+2}{n-5}\left(n\inℤ;n\ne5\right)\). Tìm n để \(A\inℤ\)
c) Tìm \(x\inℕ\), biết:
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x.\left(x+1\right)}=\frac{6}{7}\)
a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)
=> \(A=\frac{9}{10}\)
b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)
=> \(A=1+\frac{7}{n-5}\)
Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)
=> n=(-2; 4, 6, 8)
1.a.So sánh : \(\frac{97}{100}\)và \(\frac{101}{103}\)
b.Chứng tỏ phân số: \(\frac{3n-7}{2n-5}\left(n\inℤ\right)\)là phân số tối giản
2.Tìm x biết:
a.\(\frac{1}{3}x-\frac{1}{4}=\frac{3}{5}x+1\)
b.\(\frac{2}{3}\left(\frac{1}{2}x-\frac{1}{4}\right)=\frac{4}{5}x+\frac{1}{2}\)
3.Chứng tỏ :
\(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...............+\frac{1}{12}>2\)
câu 1b
Gọi d là ƯCLN (3n-7, 2n-5), d thuộc N*
Ta có : 3n-7 chia ht cho d , 2n_5 chia ht cho d
suy ra: 2(3n-7) chia ht cho d , 3(2n-5) chia ht cho d
suy ra 6n-14 chia ht cho d, 6n-15 chia ht cho d
dấu suy ra [(6n -15) - (6n-14)] chia ht cho d dấu suy ra 1 chia ht cho d suy ra d =1
Vậy......
1) b. Để chứng tỏ \(\frac{3n-7}{2n-5}\) là phân số tối giản
Ta cần chứng minh: ( 3n - 7; 2n - 5 ) = 1
Thật vậy: ( 3n - 7 ; 2n - 5 ) = ( 2n - 5 ; ( 3n - 7 ) - ( 2n - 5 ) ) = ( 2n - 5; n - 2 ) = ( n - 2; n - 3 ) = ( n - 2; 1 ) = 1
=> \(\frac{3n-7}{2n-5}\) là phân số tối giản
3) \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{12}\)
Ta có: \(\frac{1}{3}+\frac{1}{4}=\frac{7}{12}>\frac{6}{12}=\frac{1}{2}\)
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}=\left(\frac{1}{5}+\frac{1}{7}\right)+\frac{1}{6}=\frac{12}{35}+\frac{1}{6}>\frac{12}{36}+\frac{1}{6}=\frac{2}{6}+\frac{1}{6}=\frac{1}{2}\)
\(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}=\left(\frac{1}{8}+\frac{1}{9}+\frac{1}{10}\right)+\left(\frac{1}{11}+\frac{1}{12}\right)>\frac{1}{3}+\frac{1}{6}=\frac{1}{2} \)
=> A > 1/2 + 1/2 + 1/2 + 1/2 = 2
Bài 1
\(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+.......+\frac{1}{x.\left(x+1\right)}=\frac{49}{50}\)
\(\frac{2x+3}{x-1}\)có giá trị là số nguyên \(\left(x\inℤ,x\ne0\right)\)
\(\frac{x-4}{y-3}=\frac{4}{3}\)và \(x-y=5\)\(\left(y\ne3\right)\)
Tìm x,y nguyên dương để: \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
\(\left(x+3\right)^2+\left(y-1\right)^2< 4\left(x;y\inℤ\right)\)
\(\left(x+3\right)^2.\left(y-3\right)=-4\left(x;y\inℤ\right)\)
đổi k ko,mk hứa sẽ k lại(nếu ko làm chó!!!!!!!!!!!!!)
Bài 1: <Cho là câu a đi>:
a. \(\frac{1}{2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow1-\frac{1}{x+1}=\frac{49}{50}\)
\(\rightarrow\frac{1}{x+1}=1-\frac{49}{50}=\frac{1}{50}\)
\(\rightarrow x+1=50\rightarrow x=49\)
Vậy x = 49.
Tìm x, y nguyên dương để : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\)
Ta có : \(\frac{1}{x}+\frac{y}{2}=\frac{5}{8}\) => \(\frac{5}{8}-\frac{y}{2}=\frac{1}{x}\)
=> \(\frac{5-4y}{8}=\frac{1}{x}\) => \(\left(5-4y\right)x=8\)
=> 5 - 4y; x là ước của 8
Ta có bảng :
5 - 4y | 1 | 2 | 4 | 8 |
x | 8 | 4 | 2 | 1 |
y | 1 | 3/4 | 1/4 | -3/4 |
Vì x,y nguyên dương => x = 8 ; y = 1
Vậy x = 8; y = 1 là 2 giá trị cần tìm
Study well ! >_<
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
Chứng minh rằng:
a)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\)<1
b)\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{100}{2^{100}}\)<2
c)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)<\(\frac{3}{4}\)
d)\(\frac{1}{3^3}+\frac{1}{4^3}+\frac{1}{5^3}+...+\frac{1}{n^3}\)<\(\frac{1}{12}\)\(\left(n\in N;n\ge3\right)\)
e)\(\frac{3}{4}+\frac{5}{36}+\frac{7}{144}+...+\frac{2n+1}{n^2\left(n+1\right)^2}\)<1 (n nguyên dương)
g)\(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{2048}\)>3
h)\(\left(\frac{2}{1}\right)\left(\frac{4}{3}\right)\left(\frac{6}{5}\right)...\left(\frac{200}{199}\right)\)
\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có :
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)
\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)
\(\Rightarrow\)\(A< 1\) ( đpcm )
Vậy \(A< 1\)
Chúc bạn học tốt ~
- Bài 1 :
a, \(\left(\frac{4}{5}+\frac{2}{3}\right):\frac{1}{5}-1,4\times\left(\frac{-5}{7}\right)^2\)
- Bài 2
a, \(\frac{3}{2}-|\frac{1}{2}x-\frac{1}{3}|=\frac{1}{2}\)
b,Tìm \(x\inℤ\)biết \(0,6-160\%< x\le3\frac{2}{3}:\frac{22}{18}\)
- LM hết tick 3 tick ^-^
\(a,\left[\frac{4}{5}+\frac{2}{3}\right]:\frac{1}{5}-1,4\cdot\left[\frac{-5}{7}\right]^2\)
\(=\left[\frac{4\cdot3}{15}+\frac{2\cdot5}{15}\right]:\frac{1}{5}-1,4\cdot\frac{-5}{7}\cdot\frac{-5}{7}\)
\(=\left[\frac{12}{15}+\frac{10}{15}\right]:\frac{1}{5}-\frac{14}{10}\cdot\frac{25}{49}\)
\(=\frac{22}{15}:\frac{1}{5}-\frac{7}{5}\cdot\frac{25}{49}\)
\(=\frac{22}{15}\cdot\frac{5}{1}-\frac{7}{5}\cdot\frac{25}{49}\)
\(=\frac{22\cdot5}{15\cdot1}-\frac{7\cdot25}{5\cdot49}=\frac{22\cdot1}{3\cdot1}-\frac{1\cdot5}{1\cdot7}=\frac{22}{3}-\frac{5}{7}\)
= ...
Tự tính
Bài 2 : \(a,3-\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}\)
\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{1}{2}+3\)
\(\Rightarrow\left|\frac{1}{2}x-\frac{1}{3}\right|=\frac{7}{2}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{2}x-\frac{1}{3}=\frac{7}{2}\\\frac{1}{2}x-\frac{1}{3}=-\frac{7}{2}\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{23}{3}\\x=\frac{-19}{3}\end{cases}}\)
Vậy \(x\in\left\{\frac{23}{3};\frac{-19}{3}\right\}\)
b, \(0,6-160\%< x\le3\frac{2}{3}:\frac{22}{18}\)
\(\Rightarrow0,6-\frac{160}{100}< x\le\frac{11}{3}:\frac{22}{18}\)
\(\Rightarrow0,6-\frac{8}{5}< x\le\frac{11}{3}\cdot\frac{18}{22}\)
\(\Rightarrow0,6-1,6< x\le3\)
\(\Rightarrow-1< x\le3\)
\(\Rightarrow x\in\left\{0;1;2;3\right\}\)
3. Cho \(A=\frac{3x-1}{x-1}\)và \(B=\frac{2x^2+x-1}{x+2}\)
a) Tìm \(x\inℤ\)để A; B là số nguyên
b) Tìm \(x\inℤ\)để A và B cùng là số nguyên
4. Thực hiện phép tính
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2017.2019}\right)\)
\(S+\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)\left(1-\frac{1}{5^2}\right)\left(1-\frac{1}{6^2}\right)...\left(1-\frac{1}{99^2}\right)\)
là S =... nhé, ko phải S +...
3. a) \(đk:x\ne1;x\ne-2\)
Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)