Những câu hỏi liên quan
DA
Xem chi tiết
LC
15 tháng 10 2015 lúc 12:55

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Bình luận (0)
TN
Xem chi tiết
SB
Xem chi tiết
TN
Xem chi tiết
PH
8 tháng 12 2018 lúc 12:21

Nếu p = 2 thì 8p - 1 = 15 là hợp số 

Nếu p = 3 thì 8p + 1 = 25 là hợp số.

Nếu p > 3 thì p là số ko chia hết cho 3 nên 8p không chia hết cho 3

Xét 3 số tự nhiên liên tiếp 8p - 1 ; 8p và 8p + 1 có 1 số chắc chắn chia hết cho 3

Mà 8p không chia hết cho 3

Nên 8p - 1 hoặc 8p + 1 chia hết cho 3.

Mà p > 3 nên 8p - 1 và 8p + 1 đều lớn hơn 3.

Vậy 8p - 1 và 8p + 1 không đồng thời là số nguyên tố.

Bình luận (0)
TQ
Xem chi tiết
LD
28 tháng 6 2017 lúc 16:56

là hợp số

Bình luận (0)
TQ
29 tháng 6 2017 lúc 14:30

bn Lưu Dung có thể tra lời cụ thể đc ko vậy!!!!!!!!!!!

Bình luận (0)
TQ
29 tháng 6 2017 lúc 17:21

trình bày ra đi bn!!!!!!!!!!!!!

Bình luận (0)
LT
Xem chi tiết
TN
Xem chi tiết
NH
10 tháng 4 2022 lúc 21:33

Bạn tham khảo nhé!

Với p=3 =>8p-1=23 (thỏa mãn)

                 8p+1=25(loại)

Với p khác 3 =>p không chia hết cho 3 =>8p không chia hết cho 3

mà (8p-1)(8p+1)là tích của 3 số tự nhiên liên tiếp 

Theo đề bài :8p-1 >3 (p thuộc N) =>8p-1 không chia hết cho 3 

=> 8p+1 chia hết cho 3

mà 8p+1>3 

=>8p+1 là hợp số 

Vậy 8p+1 là hợp số, 8p-1 là số nguyên tố.

Bình luận (0)
 Khách vãng lai đã xóa
MH
11 tháng 4 2022 lúc 1:56

TH1: \(p=3\) thì ta có \(8p-1=23\) là số nguyên tố, \(8p+1=25\) là hợp số.

TH2: \(p=3k+1\), ta có \(8p+1=8\left(3k+1\right)+1=24k+9⋮3\)

Vậy trong trường hợp này \(8p-1\) phải là số nguyên tố, còn \(8p+1\) là hợp số.

TH3: \(p=3k+2\), ta có \(8p-1=8\left(3k+2\right)-1=24k+15⋮3\)

Vậy trong trường hợp này \(8p+1\) phải là số nguyên tố, còn \(8p-1\) là hợp số.

Vậy khi \(p\) là số nguyên tố, nếu 1 trong 2 số \(8p-1;8p+1\) là số nguyên tố thì số còn lại là hợp số.

Bình luận (0)
JJ
Xem chi tiết
CC
19 tháng 11 2017 lúc 9:08

Vì p là số nguyên tố nên p lớn bằng 2

+ Nếu p=2 thì 8p+1=8.2+1=17, là số nguyên tố

                       8p-1=8.2-1=15, là hợp số

+ Nếu p=3 thì 8p+1=8.3+1=25, là hợp số

                       8p-1=8.3-1=23, là số nguyên tố

+ Nếu p>3, mà p là số nguyên tố =>8p ko chia hết cho 3

Xét 3 số tự nhiên liên tiếp : 8p-1, 8p, 8p+1

Trong 3 số tự nhiên nàyphải có 1 số chia hết cho 3, mà 8p ko chia hết cho 3 do đố 1 trong 2 số 8p-1 hoặc 8p+1 phải chia hết cho 3

Do đó 8p-1 hoặc 8p+1 là hợp số( vì 8p-1 > 3; 8p +1 >3)

Vậy nếu p là số nguyên tố và 1 trong 2 số8p+1 và 8p-1 là số nguyên tố thì số còn lại là hợp số

Bình luận (0)
TV
Xem chi tiết
RD
14 tháng 1 2018 lúc 17:16

a) Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số 

b) p nguyên tố, p >=5, 2p+1 nguyên tố 

Vì p nguyên tố > 3 nên p không chia hết cho 3 
nếu p chia 3 dư 1 => 2p chia 3 dư 2 
=> 2p+1 chia hết cho 3, vô lí do 2p+1 nguyên tố > 3 
vậy p chia 3 dư 2 => p+1 chia hết cho 3 
=> 4p+1 = 3p + p+1 chia hết cho 3 và 4p+1 > 3 
=> 4p+1 là hợp số 
............................

Bình luận (0)