Những câu hỏi liên quan
PQ
Xem chi tiết
MU
16 tháng 11 2015 lúc 20:25

hơi qá r` đấy !

1 + 7 + 72 + ........... + 7101 

= ( 1 + 7 ) + ( 72 + 73 ) + ............. + ( 7100 + 7101 )

= 8 + 72( 1 + 7 ) + ............. + 7100( 1 + 7 )

= 8 + 72 . 8 + ........... + 7100 . 8 

= 8( 1 + 72 + ............. + 7100 ) chia hết cho 8 

Bình luận (0)
LC
Xem chi tiết
NV
13 tháng 8 2015 lúc 19:46

TA CÓ : (1+7)+(7^2+7^3)+......+(7^100+7^101)

     =>    8+(7(1+7))+.....+(7^100(1+7)

    =>     8+7.8 +7^2.8+....+7^100.8

    =>     8(1+7+7^2+.....+7^100)

    MÀ 8 CHIA HẾT CHO 8  VẬY  1+7+7^2+...+7^101 CHIA HẾT CHO 8

Bình luận (0)
NN
6 tháng 10 2017 lúc 19:03

Bạn Nguyễn Văn Vinh làm đúng wa ^_^

Bình luận (0)
DM
Xem chi tiết
TC
12 tháng 12 2021 lúc 16:04

Ta có:

A=1+21+22+...+2100+2101A=1+21+22+...+2100+2101

= (1+2+22)+(23+24+25)+...+(299+2100+2101)(1+2+22)+(23+24+25)+...+(299+2100+2101)

= (1+2+22)+22.(1+2+22)+...+299.(1+2+22)(1+2+22)+22.(1+2+22)+...+299.(1+2+22)

= (1+2+22).(1+22+26+...+299)(1+2+22).(1+22+26+...+299)

= 7.(1+22+26+...+299)⋮77.(1+22+26+...+299)⋮7

(Vì 7⋮7)                     

 

Bình luận (2)
H24
12 tháng 12 2021 lúc 16:26

\(A=1+2^1+2^2+...+2^{100}+2^{101}\)

\(\Rightarrow A=\left(1+2^1+2^2\right)+\left(2^3+2^4+2^5\right)+...+\left(2^{99}+2^{100}+2^{101}\right)\)

\(\Rightarrow A=\left(1+2^1+2^2\right)+2^3\left(1+2^1+2^2\right)+...+2^{99}\left(1+2^1+2^2\right)\)

\(\Rightarrow A=\left(1+2^1+2^2\right)\left(1+2^3+...+2^{99}\right)\)

\(\Rightarrow A=7\left(1+2^3+...+2^{99}\right)⋮7\)

Bình luận (0)
PH
Xem chi tiết
ND
25 tháng 10 2020 lúc 17:32

1) \(1+4+4^2+4^3+...+4^{2012}\)

\(=\left(1+4+4^2\right)+\left(4^3+4^4+4^5\right)+...+\left(4^{2010}+4^{2011}+4^{2012}\right)\)

\(=21+21\cdot4^3+...+21\cdot4^{2010}\)

\(=21\cdot\left(1+4^3+...+4^{2010}\right)\) chia hết cho 21

2) \(1+7+7^2+7^3+...+7^{101}\)

\(=\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)

\(=8+8\cdot7^2+...8\cdot7^{100}\)

\(=8\cdot\left(1+7^2+...+7^{100}\right)\) chia hết cho 8

3) CM chia hết cho 5:

\(2+2^2+2^3+2^4+...+2^{100}\)

\(=\left(2+2^3\right)+\left(2^2+2^4\right)+...+\left(2^{98}+2^{100}\right)\)

\(=5\cdot2+5\cdot2^2+...+5\cdot2^{98}\)

\(=5\cdot\left(2+2^2+...+2^{98}\right)\) chia hết cho 5

CM chia hết cho 31:

\(2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\cdot31+...+2^{96}\cdot31\)

\(=31\cdot\left(2+...+2^{96}\right)\) chia hết cho 31

Bình luận (0)
 Khách vãng lai đã xóa
LT
19 tháng 11 2023 lúc 19:43

Rrffhvyccbvfccvbbbhhgg

Bình luận (0)
HV
Xem chi tiết
LV
Xem chi tiết
LL
4 tháng 10 2021 lúc 17:41

\(A=1+4+4^2+...+4^{2012}=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...+4^{2010}\left(1+4+4^2\right)\)

\(=21+21.4^3+...+21.4^{2010}=21\left(1+4^3+...+4^{2010}\right)⋮21\)

\(B=1+7+7^2+...+7^{101}=\left(1+7\right)+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)

\(=8+7^2.8+...+7^{100}.8=8\left(1+7^2+...+7^{100}\right)⋮8\)

Bình luận (0)
NA
Xem chi tiết
NC
8 tháng 10 2017 lúc 20:10

thank bạn nhé

Bình luận (0)
H24
Xem chi tiết
KM
22 tháng 8 2018 lúc 11:47

\(a.\)\(5^{2003}+5^{2002}+5^{2001}\)

\(=5^{2001}.\left(1+5+5^2\right)\)

\(=5^{2001}.31\)

\(\Rightarrow5^{2003}+5^{2002}+5^{2001}⋮31\)

\(b.\)

\(1+7+7^2+7^3+......+7^{101}\)

\(=8+7^2.\left(1+7\right)+7^4.\left(1+7\right)+....+7^{100}.\left(1+7\right)\)

\(=8+7^2.8+7^4.8+.....+7^{100}.8\)

\(=8+8.\left(7^2+7^4+...+7^{100}\right)\)

Ta thấy cả hai số hạng đều chia hết cho 8

\(\Rightarrow1+7+7^2+7^3+......+7^{101}⋮8\)

Bình luận (0)
H24
22 tháng 8 2018 lúc 11:50

Mình cảm ơn :)

Bình luận (0)
SF
22 tháng 8 2018 lúc 11:58

Chứng tỏ rằng : 

a) 5^2003 + 5^2002 + 5^2001 chia hết cho 31 

5^2003 + 5^2002 + 5^2001 

= 5^2001 . 5^2 + 5^2001 . 5^1 + 5^200 . 1 

= 5^2001 . 25 + 5^2001 . 5 + 5^2001 . 1

= 5^2001 . ( 25 + 5 + 1 ) 

= 5^2001 . 31 chia hết cho 31

Vậy 5^2003 + 5^2002 + 5^2001 chia hết cho 31

Bình luận (0)
HL
Xem chi tiết
HL
4 tháng 11 2018 lúc 13:19

sao ko ai lam the

Bình luận (0)