Những câu hỏi liên quan
LT
Xem chi tiết
AH
22 tháng 6 2023 lúc 17:19

Đề có vấn đề. Bạn coi lại.

Bình luận (0)
TK
Xem chi tiết
ND
Xem chi tiết
AL
12 tháng 8 2016 lúc 18:48

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}...+\frac{1}{x\left(x+1\right):2}=\frac{2009}{2011}\)

\(=>\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x\left(x+1\right)}=\frac{2009}{4022}\)

\(=>\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}=\frac{1009}{4022}\)

\(=>\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(=>\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(=>\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(=>\frac{1}{x+1}=\frac{1}{2011}\)

\(=>x+1=2011\)

\(=>x=2010\)

Bình luận (0)
SK
12 tháng 8 2016 lúc 18:52

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}\right):2=\left(\frac{2009}{2011}\right):2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2000

Bình luận (0)
H24
Xem chi tiết
NT
Xem chi tiết
ND
Xem chi tiết
SK
12 tháng 8 2016 lúc 18:54

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}=\frac{2009}{2011}\)

\(\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.....+\frac{1}{x.\left(x+1\right):2}\right):2=\left(\frac{2009}{2011}\right):2\)

\(\Rightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{x.\left(x+1\right)}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2009}{4022}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2011}\)

=> x + 1 = 2011

=> x = 2000

Bình luận (0)
ND
Xem chi tiết
TH
Xem chi tiết
NH
4 tháng 7 2016 lúc 8:26

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{2009}{2011}\)

\(2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2009}{2011}\)

\(\frac{1}{2}-\frac{1}{x+1}=\frac{2009}{4022}\)

\(\frac{1}{x+1}=\frac{1}{2011}\)

\(x+1=2011\)

\(x=2010\)

Bình luận (0)
HK
Xem chi tiết