a, chứng minh rằng : 1-1/2+1/3-1/4+...-1/2000+1/2001-1/2002 = 1/1002+ ...+ 1/2002
giúp mk nha
chứng minh : \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+.....+\frac{1}{2002}\)
\(1-\frac{1}{2}+\frac{1}{3}-...+\frac{1}{2001}-\frac{1}{2002}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)\)\(-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
= \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2001}+\frac{1}{2002}\right)\)\(-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2002}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2002}\right)\)\(-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2002}\)
Chứng minh rằng: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+\frac{1}{1003}+...+\frac{1}{2002}\)
ta chuyển đề bài vế trái thành:
(1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)
=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)
=1/1002+1/1003+...+1/2002
=> điều phải chứng minh
Chứng minh rằng:
1 - 1/2 + 1/3 - 1/4 + ... + 1/2001 - 1/2002
= 1/1002 + 1/1003 + ... + 1/2002
Các bạn nhớ chỉ cách trình bày luôn nhé!
Cảm ơn nhiều nhé!
ta chuyển đề bài vế trái thành:
(1+1/2+1/3+1/4+...+1/2001+1/2002) - 2(1/2+1/4+1/6+...+1/2002)
=(1+1/2+1/3+....+1/2002) - (1+1/2+1/3+1/4+...+1/1001)
=1/1002+1/1003+...+1/2002
=> điều phải chứng minh
CMR \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2000}+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)
đặt \(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ Q=\dfrac{1}{1002}+...+\dfrac{1}{2002}\)
ta có:
\(P=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}\\ \Rightarrow P=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2001}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\)\(\Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)\\ \Rightarrow P=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2002}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1001}\right)\\ \Rightarrow P=\dfrac{1}{1002}+...+\dfrac{1}{2002}\\ \Rightarrow P=Q\)\(\Rightarrow1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2001}-\dfrac{1}{2002}=\dfrac{1}{1002}+...+\dfrac{1}{2002}\left(đpcm\right)\)
a, cho 3 số dương a,b,c có tổng =1. chứng minh rằng: 1/a+1/b+1/c lớn hơn hoặc =9
b, cho a,b dương với a^2000+b^2000=a^2001+ b^2001=a^2002+b^2002
tính a^2001+b^2001
phần a nhé
1/a+1/b+1/c=(a+b+c)(1/a+1/b+1/c)=3+(a/b+b/a)+(b/c+c/b)+(a/c+c/a) do a+b+c=1
áp dụng bdt cosi cho các so dương a/b,b/a,a/c,c/a,b/c,c/b
a/b+b/a >=2
b/c+c/b>=2
a/c+c/a>=2
cộng hết vào suy ra 1/a+1/b+1/c >=9
Tìm giá trị nguyên của x và y thỏa mãn: 3xy+x-y=1
CMR: \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}=\frac{1}{1002}+...+\frac{1}{2002}\)
Câu hỏi của Cristiano Ronaldo - Toán lớp 7 - Học toán với OnlineMath
Cho A=1-1/2+1/3-1/4+....+1/2001-1/2002
B=1/1002+1/1003+...+1/2002
Tính A/B=?
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2002}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{2001}+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1001}\right)\)
\(A=\frac{1}{1002}+\frac{1}{1003}+\frac{1}{1004}+...+\frac{1}{2001}+\frac{1}{2002}=B\)
=> A/B = 1
S = 1 - 1/2 + 1/3 - 1/4 + ... + 1/2001 - 1/2002 P = 1/1002 + 1/1003 + ... + 1/2002 Hỏi S - P = ?
S=\(\left(1+\frac{1}{2}+......+\frac{1}{2002}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+..........+\frac{1}{2002}\right)\)
=\(\left(1+\frac{1}{2}+.........+\frac{1}{2002}\right)-\left(1+\frac{1}{2}+.........+\frac{1}{1001}\right)\)
=\(\frac{1}{1002}+\frac{1}{1003}+...........+\frac{1}{2002}=P\)
\(\Rightarrow S-P=0\)
cmr: 1 - 1/2 + 1/3 -1/4 +...-1/200 + 1/2001 - 1/2002 = 1/1002 +...+ 1/2002
AI GIÚP NHÉ!!! THANKS:)