CMR : a chia hết cho m, b chia hết cho n thì a.b chia hết cho ( m.n)
CMR nếu a chia hết cho m và b chia hết cho n thì a.b chia hết cho ( m.n)
CMR
a) Nếu a chia hết cho m và b chia hết cho n thì a.b chia hết cho (m.n)
b) Nếu a chia hết cho b thì a mũ m chia hết cho b mũ m ( a,b,m thuộc N)
Ai giải rõ ràng và nhanh nhất thì mik like ( nhanh nha mik sắp nộp bài rồi )
a) a=9 ; b=3 ; m=9 ; n=3. a chia hết cho m thì bằng: 9:9=1 ; b chia hết cho những thì bằng: 3:3=1.
a.b chia hết cho m.n thì bằng : 9.9 chia hết cho 3.3 = 9.9=81 chia hết cho 3.3=9.
Vậy là xong câu a. Bạn có thể tìm số khác nhưng phải làm sao cho số a chia hết cho số b. Còn m=a ; những=b
b) a chia hết cho b = 9 chia hết cho 3; a mũ m chia hết cho b mũ m = 9^9 chia hết cho 3^3. Vì 9 chia hết cho 3 mà.
Mà a=9 ; b=3 ; m=9. Các số này đều thuộc tập hợp N luôn.
Mình giải xong rồi đó. tick cho mình đi. Thank
phát biểu thành lời các công thức sau
m=a.b => m chia hết cho a , m chia hết cho b
m chia hết cho a=> m = a.k
m chia hết cho a ; a chia hết cho b =>m chia hết cho b
m chia hết cho a ; n chia hết cho a =>(m+n)chia hết cho a
m chia hết cho a => m.k chia hết cho a
nếu a.b chia hết cho k và \(\frac{a}{k}\)tối giản=> b chia hết cho k
nếu m chia hết cho a , m chia hết cho b,\(\frac{a}{b}\)tối giản => m chia hết cho ( a.b )
M chia hết cho , n chia hết cho b => m.n chia hết cho ( a+b )
1) Chứng minh rằng nếu a chia hết cho m và b chia hết cho n thi a.b chia hết cho m.n
2)Chứng minh rằng nếu n chia hết cho 12(n khac 0) thì 1+3+5+7+.....+(2n-1) chia hết cho 144
cmr nếu a.b chia hết cho c thì b chia hết cho c và a chia hết cho c
Cho a,b,c,d thuộc N ,a khác 0
CMR: (a.b+c.d) chia hết cho (b-c) <=> (a.d+b.c) chia hết cho (a-c)
Cần gấp nha m.n
Ai nhanh mik tick
iu m.n:3
Người ta chứng minh được rằng:
a) Nếu a chia hết cho m và a chia hết cho n thì a chia hết cho BCNN của m và n
b) Nếu tích a.b chia hết cho c mà b và c là 2 số nguyên tố cùng nhau thì a chia hết cho c.
a, Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^3 chia 3 dư 1
b, CMR với mọi n,m thuộc N ta luôn có m.n(m^2-n^2) chia hết cho 3
Các cụ cho con bỏ câu này
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
khó.......................................qáu
a, cmr n^2+n chia hết cho 2 với n thuộc N
b,cmr a^2b+ b^2a chia hết cho 2 với a.b thuộc N
c, cmr51^n+47^102 chia hết cho 10 n thuộc N
a, \(n^2+n=n\left(n+1\right)\)
Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)
Vậy ...
b, \(a^2b+b^2a=ab\left(a+b\right)\)
Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)
Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)
Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)
Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)
c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)