Chứng tỏ rằng ( 2011^n + 1 )( 2011^n + 2 ) chia hết cho 3 với n thuộc số tự nhiên
a/ Chứng tỏ rằng trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3.
b/ Chứng tỏ rằng: (2011n + 2).(2011n + 1) chia hết cho 3 với n \(\in\) N.
a,
Gọi 3 số tự nhiên liên tiếp là a;a+1;a+2
Khi chia một số cho 3 sẽ xảy ra 1 trong ba trường hợp sau:
a=3k hoạc a=3k+1 hoặc a=3k+2
* Nếu a=3k thì a sẽ chia hết cho 2. (1)
* Nếu a=3k+2 thì a+1=3k+2
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+1 chia hết cho 3 (2)
* Nếu a=3k+1 thì a+2=3k+1
a =3k+3
Vì 3k chia hết cho 3
3 chia hết cho 3
=> 3k+3 chia hết cho 3 hay a+2 chia hết cho 3 (3)
Từ (1),(2) và (3) =>trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3
a) Chứng tỏ rằng tổng 5 số tự nhiên liên tiếp thì chia hết cho 5
b) Chứng tỏ rằng ( n+2010)+(n+2011) luôn chia hết cho 2 với mọi n là số tự nhiên
bài 1: Chứng tỏ rằng \(\left(2005^n+1\right)\left(2005^n+2\right)\)chia hết cho 3 với mọi n tự nhiên.
bài 2: Cho A=\(\frac{2011^{2011}+2}{2011^{2011}-1}\)và B=\(\frac{2011^{2011}}{2011^{2011}-3}\)
hãy so sánh A và B
B1: Chứng tỏ với mọi số tự nhiên n thì 9^2n - 1 chia hết cho 2 và 5
B2: Chứng tỏ
a,942^60 - 351^37 chia hết cho 5
b,99^5 - 98^4 +97^3 - 96^2 chia hết cho 2 và 5
B3:Chứng tỏ B= 405^n + 2^405 + m^2 không chia hết cho 10
B4: Tìm 2 chữ số tận cùng của
a, 6^2011
b, 351^2011
c, 218 ^218
bài 1
Áp dụng a^ n -b^ n chia hết cho a-b với mọi n thuộc N : a ^n -1+ b ^n+1 chia hết cho a+b với mọi n thuộc N
=> 9^ 2n-1
= máy tính bỏ túi là xong
bài 2
a) Ta có : 942 60 -351 37=(942 4 )15 -351 37=(...6)15 -351 37=(...6)-(...1)=(...5)
vì (...5) có tận cùng là 5
=> (...5) chia hết cho 5
b) Ta có : 99^ 5=(99^ 4 )(99 ^1 )=(...1).(...9)=(....9)
98^ 4=(...6)
97^ 3=97^ 2 .97=(...9)(..7)=(..3)
96 ^2=(....6)
=> (...9)-(...6)+(...3)-(...6)=(...0)
Vây (....0) chia hết cho cả 2 và 5
bài 3
A = 405 n + 2^405 + m2
405^ n tận cùng là 5 2 ^405 = (2^ 4 )101 . 2
= (...6)101 . 2 = (..6).2 = (..2)
m2 tận cùng là 0;1;4;5;6;9
Vậy chữ số tận cùng của A có thể là 7 ; 8 ; 3 ; 2 ; 6
n không có tận cùng là 0
Vậy A không chia hết cho 10
bài 4
a) Chữ số tận cùng của số đuôi 1 lũy thừa luôn là 1
b) Số đuôi 8 thì: ^(2n+1) thì đuôi là 8
^(2n+2) thì đuôi là 4
^(2n+3) thì đuôi là 2
^(2n+4) thì đuôi là 6
218=108.2+2=> Có đuôi là 4
Cho N=n1+n2+n3+...+n10=2011. Đặt S=n21+...+n210. Chứng tỏ rằng (S-1) chia hết cho 2 với n1,...,n10 là các số tự nhiên
trả lời giùm tớ đi các ban ko thôi tớ sẽ bị cô la
Câu hỏi của Dung Viet Nguyen - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
câu 1 có bao nhiêu số tự nhiên nhỏ hơn 100 chia hết cho 5 dư 3
câu 2 :chứng tỏ rằng với mọi số tự nhiên n thì tích n.(n+5) chia hết cho 2
câu 3 : gọi A= n^2 +n+1 (n thuộc N ) .chứng tỏ rằng :
a. A không chia hết cho 2
b . A không chia hết cho 5
Câu 1 Chứng tỏ rằng ( n + 20102011 ) . ( n + 2011 ) chia hết cho 2 với mọi n \(\in\)N
\(A=\left(n+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left(n+2010-2010+2010^{2011}\right)\left(n+2011\right)\)
=> \(A=\left[\left(n+2010\right)-\left(2010-2010^{2011}\right)\right]\left(n+2011\right)\)
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)\)
Vì n là số tự nhiên nên (n+2010) và (n+2011) là 2 số tự nhiên => (n+2010)(n+2011) chia hết cho 2
( vì tích 2 số tự nhiên liên tiếp luôn chia hết cho 2)
Mặt khác dễ thấy 2010-2010^11 có chữ số tận cùng là 0 nên chia hết cho 2
=> \(A=\left(n+2010\right)\left(n+2011\right)-\left(2010-2010^{2011}\right)\left(n+2011\right)⋮2\) ( Với mọi n \(\in\)N )
chứng tỏ rằng ( n + 2010²⁰¹¹).(n+2011) chia hết cho 2 với mọi n ∈N
20102011 chẵn nên đặt là 2k
2011 lẻ nên đặt là 2q + 1
Ta có:
Đặt A = (n + 2k)(n + 2k + 1)
+ n lẻ => n + 2k + 1 chẵn => n + 2q + 1 chia hết cho 2 => A chia hết cho 2
+ n chẵn => n + 2k chẵn => n + 2k chia hết cho 2 => A chia hết cho 2
Vậy...
1.Cho biểu thức:A=(a^2015+b^2015+c^2015)-(a^2011+b^2011+c^2011) với a,b,c là các số nguyên dương. Chứng minh rằng A chia hết cho 30
2. Tìm tất cả các số tự nhiên n sao cho n²-14n-256 là một số chính phương.
giúp mình với các bạn nhé!