Cho a+b+c=0
Tính \(E=\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Cho (a+b+c)^2 = 3(ab+bc+ca). CMR: a=b=c
Cho a^3+b^3+c^3 = 3abc. CMR: a=b=c và a+b+c=0
Cho a+b+c=0. CMR: a^3+b^3+c^3 = 3abc
`(a+b+c)^2=3(ab+bc+ca)`
`<=>a^2+b^2+c^2+2ab+2bc+2ca=3(ab+bc+ca)`
`<=>a^2+b^2+c^2=ab+bc+ca`
`<=>2a^2+2b^2+2c^2=2ab+2bc+2ca`
`<=>(a-b)^2+(b-c)^2+(c-a)^2=0`
`VT>=0`
Dấu "=" xảy ra khi `a=b=c`
`a^3+b^3+c^3=3abc`
`<=>a^3+b^3+c^3-3abc=0`
`<=>(a+b)^3+c^3-3abc-3ab(a+b)=0`
`<=>(a+b)^3+c^3-3ab(a+b+c)=0`
`<=>(a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0`
`**a+b+c=0`
`**a^2+b^2+c^2=ab+bc+ca`
`<=>a=b=c`
Cho a+b+c=2011
Tính giá trị biểu thức A=\(\frac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)
Hằng đẳng thức:\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)
Khi đó:
\(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}\)
\(=a+b+c\)
\(=2011\)
Cho a,b,c>0. CM: \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}.\left(a^2+b^2+c^2\right)\)
Câu 1: CMR : Nếu \(a^3+b^3+c^3=3abc\) thì \(a+b+c=0\) hoặc \(a=b=c\)
Câu 2: Cho \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\) . Tính \(\frac{bc}{a^2}+\frac{ca}{b^2}+\frac{ab}{c^2}\)
Câu 3 : Cho \(a^3+b^3+c^3=3abc\left(a.b.c\ne0\right)\). Tính\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Câu 1:
Chứng minh a3+b3+c3=3abc thì a+b+c=0\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
Chứng minh a3+b3+c3=3abc thì a=b=cÁp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}a+b+c=0\\a^2+b^2+c^2-ab-bc-ac=0\end{array}\right.\)
Xét \(a+b+c=0\)\(\Rightarrow\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\)\(\Rightarrow A=\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)
\(=\left(1-1-\frac{c}{b}\right)\left(1-1-\frac{a}{c}\right)\left(1-1-\frac{b}{a}\right)\)
\(=\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)=-1\)
Xét \(a^2+b^2+c^2-ab-bc-ca=0\)\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a-b=b-c=c-a=0\Leftrightarrow a=b=c\)
\(\Leftrightarrow A=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
Áp dụng a^3+b^3+c^3+3abc=(a+b+c)(a^2+b^2+c^2-ab-ac-bc)
Biết 1/a+1/b+1/c=0
Tính A=bc/a^2 + ca/b^2 +ab/c^2
Ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)
\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)
Ta có
\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)
\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)
\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)
\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)
Cho a;b;c>0.chứng minh rằng \(\frac{a^4+b^4+c^4}{ab+bc+ca}+\frac{3abc}{a+b+c}\ge\frac{2}{3}\left(a^2+b^2+c^2\right)\)
Cho a,b,c khác 0 và phân biệt thỏa mãn a^3+b^3+c^3=3abc
Tính M=ab^2/a^2+b^2-c^2 +bc^2/b^2+c^2-a^2 + ca^2/c^2+a^2-b^2
Ta có: a3+b3+c3=3abc
<=> (a+b+c)(a2+b2+c2-ab-bc-ca)=0
<=> (a+b+c)(2a2+2b2+2c2-2ab-2bc-2ca)=0
<=> (a+b+c)[(a-b)2+(b-c)2+(c-a)2 ] = 0
<=> \(\orbr{\begin{cases}a+b+c=0\\\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\end{cases}}\)
<=> \(\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
Vì a,b,c phân biệt nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(c+a\right)\\c=-\left(a+b\right)\end{cases}}\)(*)
Lại có: \(M=\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
Thay (*) vào M ta được:
\(M=\frac{-\left(b+c\right)b^2}{\left(b+c\right)^2+\left(b+c\right)\left(b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)^2+\left(c+a\right)\left(c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{\left(b+c\right)\left(b+c+b-c\right)}+\frac{-\left(c+a\right)c^2}{\left(c+a\right)\left(c+a+c-a\right)}+\frac{-\left(a+b\right)a^2}{\left(a+b\right)\left(a+b+a-b\right)}\)
\(=\frac{-\left(b+c\right)b^2}{2b\left(b+c\right)}+\frac{-\left(c+a\right)c^2}{2c\left(c+a\right)}+\frac{-\left(a+b\right)a^2}{2a\left(a+b\right)}\)
\(=\frac{-b}{2}-\frac{c}{2}-\frac{a}{2}=\frac{-\left(b+c+a\right)}{2}\)
Mà a+b+c=0
=> M=0
Vậy M=0
Sửa lại dòng (*)
Vì a,b,c phân nên a+b+c=0 => \(\hept{\begin{cases}a=-\left(b+c\right)\\b=-\left(a+c\right)\\c=-\left(a+b\right)\end{cases}\left(\text{*}\right)}\)
Cho ab+bc+ca=3abc , a,b,c >0
C/m \(\frac{1}{\sqrt{a^2+b}}+\frac{1}{\sqrt{b^2+c}}+\frac{1}{\sqrt{c^2+a}}\ge\frac{3}{\sqrt{2}}\)
Đặt \(a^2=x;b^2=y;c^2=z\)
Ta có:
\(VT=\sqrt{\frac{x}{x+y}}+\sqrt{\frac{y}{y+z}}+\sqrt{\frac{z}{z+x}}\)
Mặt khác:
\(\sqrt{\frac{x}{x+y}}=\sqrt{\frac{x}{\left(x+y\right)\left(x+z\right)}\cdot\sqrt{x+z}}\)
Áp dụng Bđt Cauchy-Schwarz ta có:
\(VT^2\le2\left[\frac{x}{\left(x+y\right)\left(x+z\right)}+\frac{y}{\left(y+z\right)\left(y+x\right)}+\frac{z}{\left(z+x\right)\left(z+y\right)}\right]\left(x+y+z\right)\)
\(\Leftrightarrow VT^2\le\frac{4\left(x+y+z\right)\left(xy+yz+zx\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
Vì \(VP^2=\frac{9}{2}\) nên cần chứng minh \(VT^2\le\frac{9}{2}\)
\(\Leftrightarrow9\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\left(x+y+z\right)\left(xy+yz+zx\right)\)
bn tự lm tiếp
a=b=c=1 ->sai
đề đúng là:
\(\frac{a}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{b^2+c^2}}+\frac{c}{\sqrt{c^2+a^2}}\le\frac{3}{\sqrt{2}}\)
Cho a,b,c\(\in\)R đôi 1 khác nhau thỏa \(a^3+b^3+c^3=3abc\)và abc khác 0
Tính P=\(\frac{ab^2}{a^2+b^2-c^2}+\frac{bc^2}{b^2+c^2-a^2}+\frac{ca^2}{c^2+a^2-b^2}\)
CACSBANJ ZẢI NHANH ZÚP
\(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\Leftrightarrow\orbr{\begin{cases}a+b+c=0\\a=b=c\end{cases}}\)
...... bạn làm 2 TH rồi thế vào P nhé, chỗ phân tích ko hiểu thì cứ hỏi lại mình