Giải phương trình nghiệm nguyên : \(2x^2y^2-3x^2y+2xy^2+x^2-x+y=0\)
Giải phương trình nghiệm nguyên
a) \(x^2+2y^2-2xy+4x-3y-26=0\)
b) \(x^2+3y^2+2xy-2x-4y-3=0\)
c) \(2x^2+y^2+3xy+3x+2y+2=0\)
d) \(3x^2-y^2-2xy-2x-2y+8=0\)
giải phương trình:
\(x^3-x^2-x-2=0\)
\(\frac{x^2}{\sqrt{3x-2}}-\sqrt{3x-2}=1-x\)
tìm nghiệm nguyên của phương trình;
\(2x^2+y^2-2xy+2y-6x+5=0\)
Bài 1 :
a) \(x^3-x^2-x-2=0\)
\(\Leftrightarrow x^3-2x^2+x^2-2x+x-2=0\)
\(\Leftrightarrow\left(x^3-2x^2\right)+\left(x^2-2x\right)+\left(x-2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)+x\left(x-2\right)+\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+x+1\right)=0\)(1)
Vì \(x^2+x+1=x^2+2.\frac{1}{2}.x+\frac{1}{4}+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow x^2+x+1\ge\frac{3}{4}\forall x\)(2)
Từ (1) và (2) \(\Rightarrow x-2=0\)\(\Leftrightarrow x=2\)
Vậy \(x=2\)
Bài 2:
\(2x^2+y^2-2xy+2y-6x+5=0\)
\(\Leftrightarrow x^2-2xy+y^2-2x+2y+1+x^2-4x+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)-\left(2x-2y\right)+1+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(x-2\right)^2=0\)(1)
Vì \(\left(x-y-1\right)^2\ge0\forall x,y\); \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-y-1\right)^2+\left(x-2\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-y-1\right)^2+\left(x-y\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y-1=0\\x-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=x-1\\x=2\end{cases}}\Leftrightarrow\hept{\begin{cases}y=1\\x=2\end{cases}}\)
Vậy \(x=2\)và \(y=1\)
Giải phương trình nghiệm nguyên \(\left|x^2-2xy+y^2+3x-2y-1\right|+4=2x-\left|x^2-3x+2\right|\)
Where are "thiên tài"
\(|x^2-2xy+y^2+3x-2y-1|+4=2x-|x^2-3x+2|\)
\(\Leftrightarrow2x-4=|x^2-2xy+y^2+3x-2y-1|+|x^2-3x+2|\ge0\)
\(\Leftrightarrow x\ge2\)
Với \(x\ge2\)thì ta suy ra được
\(\hept{\begin{cases}x^2-2xy+y^2+3x-2y-1=\left(x-y+1\right)^2+x-2\ge0\\x^2-3x+2=\left(x-2\right)^2+x-2\ge0\end{cases}}\)
Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có:
\(x^2-2xy+y^2+3x-2y-1+4=2x-\left(x^2-3x+2\right)\)
\(\Leftrightarrow2x^2+y^2-2xy-2x-2y+5=0\)
\(\Leftrightarrow\left(x-y+1\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=3\end{cases}}\)
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
x 2 − 2xy + y 2 + 3x − 2y − 1| + 4 = 2x − |x 2 − 3x + 2| ⇔2x − 4 = |x 2 − 2xy + y 2 + 3x − 2y − 1| + |x 2 − 3x + 2| ≥ 0 ⇔x ≥ 2 Với x ≥ 2thì ta suy ra được x 2 − 2xy + y 2 + 3x − 2y − 1 = x − y + 1 2 + x − 2 ≥ 0 x 2 − 3x + 2 = x − 2 2 + x − 2 ≥ 0 Từ đây ta bỏ dấu giá trị tuyệt đối thì ta có: x 2 − 2xy + y 2 + 3x − 2y − 1 + 4 = 2x − x 2 − 3x + 2 ⇔2x 2 + y 2 − 2xy − 2x − 2y + 5 = 0 ⇔ x − y + 1 2 + x − 2 2 = 0 ⇔ x = 2 y = 3
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
Giải phương trình nghiệm nguyên: a)\(2x^4+3x^2=x^3+x^2y+x+y+16\) b)\(2x^3=x^2+2xy+13x+y+86\)
Giải phương trình nghiệm nguyên: (3x + 2y)(2x - y)2 = 7(x + y) -2
Giải phương trình nghiệm nguyên: (3x + 2y)(2x - y)2 = 7(x + y) -2
\(\left(3x+2y\right)\left(2x-y\right)^2=7\left(x+y\right)-2\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7\left(x+y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-7x-7y+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-\left(9x+6x\right)+\left(2x-y\right)+2=0\)
\(\Leftrightarrow\left(3x+2y\right)\left(2x-y\right)^2-3\left(3x+2y\right)+\left(2x-y\right)+2=0\)
Đặt \(3x+2y\) = a ,đặt \(2x-y\) = b, ta có:
\(ab^2-3a+b+2=0\)
\(\Leftrightarrow a\left(b^2-3\right)=-2-b\)
\(\Leftrightarrow a=\dfrac{-2-b}{b^2-3}\)
\(\Leftrightarrow a=\dfrac{b+2}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=\dfrac{4-b^2}{3-b^2}\)
\(\Leftrightarrow a\left(2-b\right)=\dfrac{3-b^2+1}{3-b^2}\\ \Leftrightarrow a\left(2-b\right)=1+\dfrac{1}{3-b^2}\\ \Leftrightarrow1⋮3-b^2\\ \Leftrightarrow b^2-3\in\left\{1;-1\right\}\\ \Leftrightarrow b^2\in\left\{4;2\right\}\\ \)
mà 2 không chính phương
\(\Rightarrow b\in\left\{2;-2\right\}\Rightarrow a=0\)
đến đây bạn tự giải tiếp