Những câu hỏi liên quan
HL
Xem chi tiết
LA
Xem chi tiết
KK
Xem chi tiết
NN
Xem chi tiết
NC
9 tháng 7 2019 lúc 14:54

1) 

+) a, b, c là các số nguyên tố lớn hơn 3

=> a, b, c sẽ có dạng 3k+1  hoặc 3k+2

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 3

=> (a-b)(b-c)(c-a) chia hết cho 3 (1)

+) a,b,c là các số nguyên tố lớn hơn 3 

=> a, b, c là các số lẻ và không chia hết cho 4

=> a,b, c sẽ có dang: 4k+1; 4k+3

=> Trong 3 số (a-b); (b-c); (c-a) sẽ có ít nhất một số chia hết cho 4

th1: Cả 3 số chia hết cho 4

=> (a-b)(b-c)(c-a) chia hết cho 64   (2)

Từ (1); (2) => (a-b)(b-c)(c-a) chia hết cho 64.3=192  vì (64;3)=1

=> (a-b)(b-c)(c-a) chia hết cho 48

th2: Có 2 số chia hết cho 4, Số còn lại chia hết cho 2

=> (a-b)(b-c)(c-a) chia hết cho 32  (3)

Từ (1) , (3) 

=> (a-b)(b-c)(c-a) chia hết cho 32.3=96  ( vì (3;32)=1)

=>  (a-b)(b-c)(c-a) chia hết cho 48

Th3: chỉ có một số chia hết cho 4, hai số còn lại chia hết cho 2

=>  (a-b)(b-c)(c-a) chia hết cho 16

Vì (16; 3)=1

=>  (a-b)(b-c)(c-a) chia hết cho 16.3=48

Như vậy với a,b,c là số nguyên tố lớn hơn 3

thì  (a-b)(b-c)(c-a) chia hết cho 48

Bình luận (0)
NP
Xem chi tiết
GM
Xem chi tiết
DD
22 tháng 12 2015 lúc 22:07

3)                         CM:p+1 chia hết cho 2

vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.

Vậy p+1 chia hết cho 2

                             CM:p+1 chia hết cho 3

Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)

Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3

Vậy p+1 chia hết cho 3

Mà ƯCLN(2,3) là 1

Vậy p+1 chia hết cho 2x3 là 6

Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.  

Bình luận (0)
BL
Xem chi tiết
ST
22 tháng 11 2017 lúc 19:26

Ta có: A = n2 - 1 = (n - 1)(n + 1)

Vì n là số nguyên tố lớn hơn 3 nên (n - 1)(n + 1) là tích hai số chẵn liên tiếp => A \(⋮\) 8 (1)

Vì n là số nguyên tố lớn hơn 3 nên n có dạng 3k + 1 hoặc 3k + 2 (k thuộc N)

- Nếu n = 3k + 1 thì:

A = (n - 1)(n + 1) = (3k + 1 - 1)(3k + 1 + 1) = 3k(3k + 2) \(⋮\) 3

- Nếu n = 3k + 2 thì:

A = (n - 1)(n + 1) = (3k + 2 - 1)(3k + 2 + 1) = (3k + 1)(3k + 3) = 3(3k + 1)(k + 1) \(⋮\) 3

Từ hai trường hợp trên ta có A \(⋮\) 3 (2)

Mà (8,3) = 1 (3)

Từ (1),(2),(3) => \(A⋮24\)

Bình luận (0)
DY
Xem chi tiết
DH
4 tháng 3 2021 lúc 17:35

Ta có a là số nguyên tố lớn hơn 3 => a là số lẻ

=> a-1 chia hết cho 2 => (a-1)(a+4) chia hết cho 2 (1)

Lại có a là số nguyên tố lớn hơn 3 nên a không chia hết cho 3

Nếu a chia 3 dư 1 => a-1 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

Nếu a chia 3 dư 2 => a + 4 chia hết cho 3 => (a-1)(a+4) chia hết cho 3

=> (a-1)(a+4) chia hết cho 3 (1)

Từ (1) và (2) do 2 và 3 là 2 số nguyên tố cùng nhau => (a-1)(a+4) chia hết cho 6

Bình luận (0)
H24
4 tháng 3 2021 lúc 17:37

a là số nguyên tố lớn hơn 3 nên a là số lẻ

Do đó, a - 1 là số chẵn ⇒ (a - 1)⋮2 (1)

- Nếu :

a chia 3 dư 1 suy ra: (a-1) chia hết cho 3

a chia 3 dư 2 suy ra: (a+4) chia hết cho 3

Suy ra: (a-1)(a+4) chia hết cho 3(2)

Từ (1)(2) suy ra điều phải chứng minh.

 

Bình luận (0)
GD
4 tháng 3 2021 lúc 17:39

Số nguyên tố lớn hơn 3 là số lẻ nên a  có dạng a=3n+1 hoặc a=3n+2 ( \(n\in N\))

- Nếu a=3n+1 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n\right)\left(3n+5\right)⋮3\)

- Nếu a=3n+2 \(\Rightarrow\left(a-1\right)\left(a+4\right)=\left(3n+1\right)\left(3n+6\right)⋮3\)

\(\Rightarrow\left(a-1\right)\left(a+4\right)⋮3\) với mọi số nguyên tố lớn hơn 3

Số nguyên tố > 3 là số lẻ nên có dạng 2k+1

=> a-1 chia hết cho 2

Mà (2;3)=1 => (a-1)(a+4) chia hết có 6 (2.3=6)(đpcm)

 

Bình luận (0)
LQ
Xem chi tiết
BL
14 tháng 9 2023 lúc 20:45

mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó

 

Bình luận (0)