Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
QT
Xem chi tiết
QT
Xem chi tiết
DT
3 tháng 5 2021 lúc 10:46

Ta có:\frac{2017.2018-1}{2017.2018} =1-\frac{1}{2017.2018}

         \frac{2018.2019-1}{2018.2019}=1- \frac{1}{2018.2019}

vì 2017.2018>2018.2019

=> \frac{1}{2017.2018}  > \frac{1}{2018.2019}

=> 1- \frac{1}{2017.2018} > \frac{1}{2018.2019}

=> A>B

Bình luận (2)
TH
Xem chi tiết
H24
8 tháng 6 2019 lúc 20:49

#)Giải :

\(Q=2+\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

Ta thấy : \(2>\frac{2016}{2017};2>\frac{2017}{2018};2>\frac{2018}{2019}\left(1\right)\)

\(\frac{2016}{2017+2018+2019}< \frac{2016}{2017}\left(2\right)\)

\(\frac{2017}{2017+2018+2019}< \frac{2017}{2018}\left(3\right)\)

\(\frac{2018}{2017+2018+2019}< \frac{2018}{2019}\left(4\right)\)

Từ (1) (2) (3) (4) \(\Rightarrow P>Q\)

Bình luận (0)
DA
Xem chi tiết

Bài 1

\(\frac{2017}{2018}+\frac{2018}{2019}\)và \(\left(\frac{2017+2018}{2018+2019}\right)\)mk chữa lại đề luôn đó 

Ta tách :

\(\frac{2017}{\left(2018+2019\right)+2018}\)

đến đây ta tách 

\(\frac{2017}{2018+2019}< \frac{2017}{2018}\)

vậy....

mấy câu khác tương tự 

Bình luận (0)
XO
8 tháng 7 2019 lúc 14:58

2) \(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{\frac{2}{2003}+\frac{2}{2004}+\frac{2}{2005}}\)

\(\frac{\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}}{2.\frac{1}{2003}+2.\frac{1}{2004}+2.\frac{1}{2005}}\)

=\(\frac{1\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}{2.\left(\frac{1}{2003}+\frac{1}{2004}+\frac{1}{2005}\right)}\)

\(\frac{1}{2}\)

3) \(2013+\left(\frac{2013}{1+2}\right)+\left(\frac{2013}{1+2+3}\right)+...+\left(\frac{2013}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2012}\right)\)

\(2013.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{2025078}\right)\)

\(2013.2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{4050156}\right)\)

=\(4026.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\right)\)

\(4026.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2012}-\frac{1}{2013}\right)\)

\(4026.\left(1-\frac{1}{2013}\right)\)

\(4026.\frac{2012}{2013}\)

=\(4024\)

Bình luận (0)
LT
Xem chi tiết
ST
Xem chi tiết
AK
10 tháng 4 2018 lúc 22:16

Ta có : 

\(\frac{2016}{2017}>\frac{2016}{2017+2018+2019}\)

\(\frac{2017}{2018}>\frac{2017}{2017+2018+2019}\)

\(\frac{2018}{2019}>\frac{2018}{2017+2018+2019}\)

\(\Rightarrow\frac{2016}{2017}+\frac{2017}{2018}+\frac{2018}{2019}>\) \(\frac{2016}{2017+2018+2019}+\frac{2017}{2017+2018+2019}+\frac{2018}{2017+2018+2019}\)

\(\Rightarrow P>\frac{2016+2017+2018}{2017+2018+2019}\)

\(\Rightarrow P>Q\)

Chúc bạn học tốt !!! 

Bình luận (0)
NV
10 tháng 4 2018 lúc 22:14

vì P có các số bé hơn 1 còn Q có các số lớn hơn 1 =>P<Q

Vậy P<Q.

mình làm hơi tắt xin bạn thông cảm bạn tự viết các số có trong P;Q ra nhá

Bình luận (0)
AH
10 tháng 4 2018 lúc 22:14

Đơn giản P < Q

Vì Nhìn sơ qua ta thấy tổng P gồm các phân số bé hơn 1

Tổng Q có 3 phân số lớn hơn 1

Bình luận (0)
PO
Xem chi tiết
ET
Xem chi tiết
H24
12 tháng 4 2018 lúc 20:54

Ta có : \(0< \frac{2017}{2018}< 1\) nên   \(\frac{2017}{2018}>\frac{2017+2019}{2018+2019}\)(1)

\(0< \frac{2018}{2019}< 1\) nên \(\frac{2018}{2019}>\frac{2018+2018}{2018+2019}\) (2)

Cộng vế theo vế 1 và 2 ta được : \(B=\frac{2017}{2018}+\frac{2018}{2019}>\frac{2017+2018+2018+2019}{2018+2019}=\frac{2017+2018}{2018 +2019}+1=A+1>A\)

Vậy B>A

Bình luận (0)
NL
Xem chi tiết