Chứng minh rằng:10^100+10^51+25 là số chính phương
a , Chứng minh rằng các số chính phương không có chữ số tận cùng là 2 , 3 , 7, 8
b , các số sau có phải là số chính phương không :
126 ^2 + 1 ; 1001^ 2 -3 ; 11 + 11^ 2 + 11^3 ; 10^10 + 7 ; 51 ^51 +1
127^2; 999^2; 33^4;17^10;52^51
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Cho A=10^2012 +10^2011 +10^2010 +10^2009 +8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là 1 số chính phương
a, Vì A có 3 chữ số tận cùng là 008 => A chia hết cho 8 (1)
A có tổng các chữ số là 12 chia hết cho 3 (2)
Từ (1) và (2) với (3,8)=1 => A chia hết cho 24
b, Vì A có chữ số tận cùng là 8 nên A không phải là số chính phương.
Chứng minh A = 10100 + 6 không phải là số chính phương.
cho A=102014+102013+102012+102011 +8
a)chứng minh rằng A chia hết cho 24
b)chứng minh rằng A không phải là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
a) A có 3 chữ số tận cùng là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 9 nên chia hết cho 3 (2)
Từ (1) và (2) kết hợp với (3,8) = 1 => A chia hết cho 24
b) A có chữ số tận cùng là 8 nên không là số chính phương
làm thế nào mà tìm được các chữ số là 9
cho a=102012+102011+102010+102009=8
a, chứng minh rằng a chia hết cho 24
b, chứng minh rằng a ko là số chính phương
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.
a=102012+102011+102010+102009+8
a=100..0 + 100...0 + 100...0 + 100...0 +8
(2012 số 0) (2011 số 0) (2010 số 0) (2009 số 0)
Tổng các chữ số của a là (1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+(1+0+0+...+0)+8=12 chia hết cho 3
suy ra a chia hết cho 3 (1)
Vì 102012 chia hết cho 8, 102011 chia hết cho 8, 102010 chia hết cho 8, 102009 chia hết cho 8, 8 chia hết cho 8
nên a chia hết cho 8 (2)
Từ (1) và (2), do (3,8)=1 nên a chia hết cho 24
b, a=102012+102011+102010+102009+8
a=(...0)+(...0)+(...0)+(...0)+8
a=(...8), không là số chính phương.
r
r
r
rr
r
rr
7
y
y
y
y
yy
y
y
y
y
y
yy
y
yyyyy
gsdggr
gdg
g
f
d
f
g
f
s
f
chứng minh rằng (10n+10n-1+...+10+1)x(10n+1+5)+1 là số chính phương!!!!
Cho A bằng 102012+102011+102010+102009+8
a) Chứng minh rằng A chia hết cho 24
b) Chứng minh rằng A không phải là số chính phương.
a/ Xét chữ số tận cùng của A là 008 nên chia hết cho 8 (1)
A có tổng các chữ số là 12 nên chia hết cho 3 (2)
Lại có (8,3) = 1 (3)
Từ (1)(2)(3) suy ra A chia hết cho 24
Chứng minh rằng với \(n\in N\) thì A là số chính phương biết:
\(A=\left(10^n+10^{n-1}....+10+1\right)\left(10^{n+1}+5\right)+1\)
Lời giải:
Xét:
$M=1+10+....+10^n$
$10M=10+10^2+....+10^{n+1}$
$10M-M=10^{n+1}-1$
$M=\frac{10^{n+1}-1}{9}$
$A=M.(10^{n+1}+5)+1=\frac{(10^{n+1}-1)(10^{n+1}+5)}{9}+1$
$=\frac{10^{2n+2}+4.10^{n+1}-5+9}{9}$
$=\frac{10^{2n+2}+4.10^{n+1}+4}{9}$
$=\frac{(10^{n+1}+2)^2}{9}$
$=\left(\frac{10^{n+1}+2}{3}\right)^2$
Ta thấy: $10^{n+1}+2\equiv 1^{n+1}+2=3\equiv 0\pmod 3$
Do đó: $\frac{10^{n+1}+2}{3}\in\mathbb{N}$
Suy ra $A$ là scp.
Chứng minh rằng A là số chính phương:
1. A= 111...1 222...25 gồm 9 chữ số 1 và 10 chữ số 2
2. A= 999...9 8000..01 gồm 9 chữ số 9 và 9 chữ số 0