Tìm x,y:x-y=x.y=x:y(y#0)
Tìm hai số hữu tỉ x và y sao cho x+y =xy=x:y=y:x( y khác 0 )
tìm x;y
x+y=x.y=y:x (y khác 0)
Ta có:
xy = x:y
=> y2= x:x = 1
=> y = 1 hoặc y= -1
y= 1 => x+1 = x (vô lý)
y= - 1 => x-1 = -x
=>x = \(\frac{1}{2}\)
\(\text{Tìm }x\text{ ; }y\)
\(x+y=x\cdot y=y\text{ : }x\left(y\text{ khác }0\right)\)
\(\text{Ta có : }\)
\(y\cdot x=y\text{ : }x\)
\(\Rightarrow\text{ }y^2=x\text{ : }x=1\)\(\Rightarrow\text{ }y=1\text{ hoặc }y=-1\)
\(\text{Mà : }\)
\(y=1\text{ }\Rightarrow\text{ }x+1=x\left(\text{ Thì không thể }\right)\)
\(y=-1\text{ }\Rightarrow\text{ }x-1=-x\)
\(\Rightarrow\text{ }x=\frac{1}{2}\)
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y
b). x-y=x.y=x:y
a) \(xy=x+y\Rightarrow y=xy-x=x\left(y-1\right)\)
\(\Rightarrow x:y=\frac{x}{x\left(y-1\right)}=y-1\)
\(\Rightarrow x+y=y-1\Leftrightarrow x=-1\)
\(\Rightarrow y-1=-y\Leftrightarrow2y=1\Leftrightarrow y=\frac{1}{2}\)
Vậy \(x=-1;y=\frac{1}{2}\)
b) \(x-y=xy\Rightarrow x=xy+y=y\left(x+1\right)\)
\(\Rightarrow x:y=\frac{y\left(x+1\right)}{y}=x+1\)
\(\Rightarrow x-y=x+1\Leftrightarrow y=-1\)
\(\Leftrightarrow x+1=-x\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Tìm số hữu tỉ x; y biết
a). x+y=x.y=x:y (y khác 0)
b). x-y=x.y=x:y (y khác 0)
a) y khác 0.
x.y = x: y nên \(x.y:\frac{x}{y}=1\) hay \(\frac{x.y.y}{x}=y^2=1\)
Vậy y = 1 hoặc -1 (chắc bạn hiểu chứ)
x+ y = x.y nên \(\frac{x+y}{x.y}=\frac{1}{x}+\frac{1}{y}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y=-1 thì 1/x = 1-(-1) = 2 => x=1/2
Vậy x=1/2 và y = -1
b) x.y = x: y => y = 1 hoặc -1 (câu a)
x-y = x.y nên \(\frac{x-y}{x.y}=\frac{1}{y}-\frac{1}{x}=1\)
+ Nếu y = 1 thì 1/x = 1-1 = 0 => Không tìm được x
+ Nếu y = -1 thì 1/x = -1 - 1 = -2 => x=-1/2
Vậy x=-1/2 và y=-1
a) xy = x : y
<=> xy2 = x
<=> y2 = 1
<=> y = 1 hoặc y = -1
-nếu y = 1 có
x + 1 = x
<=> 1 = 0 (loại)
-nếu y = -1 có
x - 1 = -x
<=> x = \(\frac{1}{2}\)
thay vào thấy thỏa mãn
Vậy x = \(\frac{1}{2}\) và y = -1
a) x+y = xy = x:y
* xy = x:y
=> xy . y = x
x . y^2 = x
xy^2 - x = 0
x( y^2 - 1 ) = 0
=> x=0 => x=0
y^2 - 1 = 0 y=+- 1
* x+y = xy
+) x=0 => 0+y = 0.y =0
y=0 (loaị)
+) y=1 => x+1 = x.1
1=0 (loại)
+) y= (-1) => x-1 = x.(-1)
x-1=x
x + x= 1
=> x=1/2
Vậy x= 1/2 ; y= -1
Tìm hai số hữu tỉ x,y sao cho:
a) x-y=2(x+y) = x:y
b) x+y = x.y =x:y
a/
\(x-y=2\left(x+y\right)\Rightarrow x=-3y\)
\(x-y=\frac{x}{y}\Rightarrow-3y-y=\frac{-3y}{y}=-3\Rightarrow-4y=-3\Rightarrow y=\frac{3}{4}\)
\(x=-3.\frac{3}{4}=-\frac{9}{4}\)
b/
\(xy=\frac{x}{y}\Rightarrow xy^2=x\Leftrightarrow x\left(y^2-1\right)=0\)\(\Leftrightarrow x=0\) hoặc \(y^2=1\)
+TH1: \(x=0\) \(0+y=0.y=\frac{0}{y}=0\Rightarrow y=0\)(loại do \(y\ne0\) (y là mẫu số)
+TH2: \(y^2=1\) \(\Rightarrow\) \(y=1\) hoặc \(y=-1\)
\(y=1\) thì \(x+1=x.1\Rightarrow1=0\) (vô lí)
\(y=-1\) thì \(x-1=-x\Rightarrow2x=1\Rightarrow x=\frac{1}{2}\)
Vậy \(x=\frac{1}{2};y=-1\)
tìm x,y biết x+y=x.y=x:y
x+y=xy=x:y
x+y=xy=> x=xy-y=>x=y(x-1)
xy=x:y=>x=xy.y=xy^2
xy=x:y=>x=x:y:y=x/y^2
=>x=xy^2=x/y^2=>1=y^2=1/y^2 => y=+-1.
Với y=1 ta có x+1=x => x=x-1 (Vô lí)
Với x=-1 thì x-1=-x =>x+x+1=0=>x=-1/2. Vậy x=-1/2, y=1
Tìm x,y (y#0) biết x+y=x.y=x:y
tìm hai số hữu tỉ x,y biết rằng:
a) x-y=x.y=x:y
b) x-y=2.(x+y)=x:y
tìm x,y ( y khác 0) biết : x + y=x.y=x:y
Ta có:
x + y = x.y => x = x.y - y = y.(x - 1)
=> x : y = x - 1 = x + y
=> y = -1
=> x = -1.(x - 1) = -x + 1
=> x + x = 1 = 2x
=> x = 1/2
Vậy x = 1/2; y = -1