Những câu hỏi liên quan
PV
Xem chi tiết
NB
16 tháng 1 2016 lúc 19:51

(x2-2x) |3x-7| =0

x2-2x= 0|3x-7|

x2-2x= 0

x2=0+2x

x2=2x

=> x\(\in\){ 0,1}

Sai thì thôi, chết thì chôn nha bạn. đừng trách mik, mik dốt toán lắm

Bình luận (0)
NK
16 tháng 1 2016 lúc 19:47

bạn tick cho tớ đi rồi tớ giải

Bình luận (0)
NK
16 tháng 1 2016 lúc 19:48

bạn tick cho tớ đi rồi tớ giải

Bình luận (0)
PV
Xem chi tiết
NV
Xem chi tiết
NM
26 tháng 7 2015 lúc 18:09

có khùng hk vậy hùng tự đăng tự giải ls

 

Bình luận (0)
NV
30 tháng 6 2015 lúc 13:39

1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51 
Vậy 2 số tận cùng của 51^51 là 51 
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3 
Vậy trung bìng cộng là 2 
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6 
Do x là số nguyên tố => x=7 TM 
5)3y=2z=> 2z-3y=0 
4x-3y+2z=36=> 4x=36=> x=9 
=> y=2.9=18=> z=3.18/2=27 
=> x+y+z=9+18+27=54 
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5 
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7) 
Nhân ra kết quả cuối cùng là x=3 
8)ta có (3x-2)^5=-243=-3^5 
=> 3x-2=-3 => x=-1/3 
9)Câu này chưa rõ ý bạn muốn hỏi! 
10)2x-3=4 hoặc 2x-3=-4 
<=> x=7/2 hoặc x=-1/2 
11)x^4=0 hoặc x^2=9 
=> x=0 hoặc x=-3 hoặc x=3 

Bình luận (0)
NT
30 tháng 6 2015 lúc 13:43

anh đang chia sẻ kiến thức đóa à

Bình luận (0)
NT
Xem chi tiết
PB
Xem chi tiết
CT
13 tháng 1 2019 lúc 18:05

Bình luận (0)
HP
Xem chi tiết
TN
13 tháng 3 2016 lúc 20:38

Th1:x2-2x=0(*)

<=>x*x-2x=0

=>x(x-2)=0

trường hợp này lại chia ra 2 Th nhỏ

TH1:x=0;

TH2:x-2=0

=>x=2

Th2:|3x-7|=0

=>3x-7=±0

=>3x=7

=>x=\(\frac{7}{3}\)

ủng hộ nhá ^^

Bình luận (0)
PB
Xem chi tiết
CT
7 tháng 4 2018 lúc 17:19

Bình luận (0)
H24
Xem chi tiết
LC
3 tháng 5 2019 lúc 22:56

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

Bình luận (0)
TP
4 tháng 5 2019 lúc 14:36

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

Bình luận (0)
CA
20 tháng 2 2021 lúc 17:33

LOADING...

Bình luận (0)
 Khách vãng lai đã xóa
PD
Xem chi tiết
NB
27 tháng 10 2015 lúc 9:49
x4-2x3+10x2-20x=0 =>x3(x-2)+10x(x-2)=0 =>(x-2)(x3+10x)=0 =>x(x-2)(x2+10)=0

 =>x=0 hoặc x=2 hoặc x= - căn 10

Bình luận (0)