Tìm giá trị nhỏ nhất:
F= - 79 + | 3x + 14 |
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm giá trị nhỏ nhất:
\(F=-79+|3x+14|\)
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Tìm giá trị lớn nhất :
\(P=-\left|4x+20\right|+79\)
\(Q=-83-\left|2x-\frac{1}{2}\right|\)
\(K=20-\left|x^2+2\right|\)
\(M=\frac{1}{2\left(x+3\right)^2+5}\)
Bài giải
Câu F mình làm ở câu trước của bạn rồi nên giờ mình trả lời tiếp luôn nha ! Bài tìm GTLN tí nữa mifh làm cho ! Đang bận !
Câu 1 : Tìm GTNN
\(H=\left|2x+5\right|+\left|8-2x\right|\)
Áp dụng tính chất \(\left|A\right|\ge A\)Ta có :
\(\left|2x+5\right|\ge2x+5\text{ Dấu " = " xảy ra khi }2x+5\ge0\text{ }\Rightarrow\text{ }2x\ge-5\text{ }\Rightarrow\text{ }x\ge-\frac{5}{2}\)
\(\left|8-2x\right|\ge8-2x\text{ Dấu " = " xảy ra khi }8-2x\ge0\text{ }\Rightarrow\text{ }2x\le8\text{ }\Rightarrow\text{ }x\le4\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge2x+5+8-2x\)
\(\Rightarrow\text{ }\left|2x+8\right|+\left|8-2x\right|\ge13\text{ Dấu " = " xảy ra khi }-\frac{5}{2}\le x\le4\)
\(\text{Vậy }Min\text{ }H=13\text{ khi }-\frac{5}{2}\le x\le4\)
Tìm giá trị nhỏ nhất: -79+10|28+7x|
\(10\left|28+7x\right|-79\ge-79\forall x\)
Dấu ''='' xảy ra khi x = -4
Vậy với x = -4 thì biểu thức trên đạt GTNN là -79
Bài 1 Tìm giá trị nhỏ nhất của biểu thức
A=23+6./3x-12/
Bài 2 Tìm giá trị lớn nhất của biểu thức
B=2019-5./14-7x/
Bài 1:
Ta có: \(6.|3x-12|\ge0\forall x\)
\(\Rightarrow23+6.|3x-12|\ge23+0\forall x\)
Hay \(A\ge23\forall x\)
Dấu"=" xảy ra \(\Leftrightarrow3x-12=0\)
\(\Leftrightarrow x=4\)
Vậy Min A=23 \(\Leftrightarrow x=4\)
Bài 2:
Ta có: \(5.|14-7x|\ge0\forall x\)
\(\Rightarrow-5.|14-7x|\le0\forall x\)
\(\Rightarrow2019-5.|14-7x|\le2019-0\forall x\)
Hay \(B\le2019\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow14-7x=0\)
\(\Leftrightarrow x=2\)
Vậy Max B=2019 \(\Leftrightarrow x=2\)
1,tìm giá trị nhỏ nhất của biểu thức
a,3,7+|4,3-x|
b,B=|3x+8,4|-14,2
2,tìm giá trị lớn nhất của biểu thức
a,D=5,5-|2x-1,5|
b,E=-|10,2-3x|-14
(nhanh giúp mình với mai mình học rồi)
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2: tìm giá trị nhỏ nhất của biểu thức
a, A= 3,7 + | 4,3 - x |
b, B= | 3x + 8,4 | - 14
c, C= | 4x - 3 | + | 5y + 7,5 | + 17,5
d, D= | x - 2018 | + | x - 2017 |
Bài 2 :
a) \(A=3,7+\left|4,3-x\right|\ge3,7\)
Min A = 3,7 \(\Leftrightarrow x=4,3\)
b) \(B=\left|3x+8,4\right|-14\ge-14\)
Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)
c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)
d) \(D=\left|x-2018\right|+\left|x-2017\right|\)
\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)
Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)
\(\Leftrightarrow2017\le x\le2018\)
\(A=3,7+\left|4,3-x\right|\)
Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)
\(B=\left|3x+8,4\right|-14\)
Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)
\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)
Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)
Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)
\(D=\left|x-2018\right|+\left|x-2017\right|\)
\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có
\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)
Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)
Xét biểu thức A= 1/15 . 225/x+2 + 3/14 . 196/3x+6
a. Rút gọn A
b. Tìm các số nguyên x để A có giá trị là các số nguyên
c. Trong các giá trị nguyên của A. Tìm giá trị lớn nhất và nhỏ nhất
a; A = \(\dfrac{1}{15}\) \(\times\) \(\dfrac{225}{x+2}\) + \(\dfrac{3}{14}\) \(\times\) \(\dfrac{196}{3x+6}\) (đk \(x\) ≠ - 2)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{3\times14}{3\times\left(x+2\right)}\)
A = \(\dfrac{15}{x+2}\) + \(\dfrac{14}{x+2}\)
A = \(\dfrac{29}{x+2}\)
b; A = \(\dfrac{29}{x+2}\) (-2 ≠ \(x\) \(\in\) Z)
A \(\in\) Z ⇔ 29 ⋮ \(x\) + 2
\(x\) + 2 \(\in\) Ư(29) = {-29; - 1; 1; 29}
Lập bảng ta có:
\(x\) + 2 | - 29 | - 1 | 1 | 29 |
\(x\) | -31 | -3 | -1 | 27 |
Theo bảng trên ta có: \(x\) \(\in\) {- 31; -3; -1; 27}
Vậy \(x\) \(\in\) {-31; -3; -1; 27}
c; Theo b ta có \(x\) \(\in\) {- 31; -3; -1; 27}
Lập bảng ta có:
\(x\) | -31 | -3 | -1 | 27 |
A = \(\dfrac{29}{x+2}\) | -1 | -29 | 29 | 1 |
Vì - 29 < - 1 < 1 < 29
Vậy A nguyên có giá trị lớn nhất là 29 và xảy ra khi \(x\) = -1
A nguyên có giá trị nhỏ nhất là - 29 xảy ra khi \(x\) = - 3
Cho A = 1/5 nhân 225/8+2 + 3/14 nhân 196/3x+6
(x thuộc z; x khác -2)
a) Rút gọn A
b) Trong các giá trị nguyên A tìm giá trị lớn nhất, các giá trị nhỏ nhất
c) Tìm x thuộc z để A thuộc z
tìm giá trị của x và yde
s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất .Tìm giá trị nhỏ nhất đó
ta có: lx+3l \(\ge\) 0 với mọi x
l2y-14l \(\ge\) 0 với mọi y
=> S= |x+3|+|2y-14|+2016 \(\ge\) 2016 với mọi x,y
dấu = xảy ra là giá trị nhỏ nhất của S đạt được khi và chỉ khi S=2016.
\(\Leftrightarrow\) lx+3l = 0 và l2y-14l = 0
\(\Leftrightarrow\) x+3=0 và 2y-14=0
\(\Leftrightarrow\)x=-3 và y=7
Vậy MinS=2016 \(\Leftrightarrow\) x=-3 và y=7
Do s=|x+3|+|2y-14|+2016 đạt giá trị nhỏ nhất nên:
x+3=0=>x=-3
2y-14=0=>y=7
Tìm số nguyên x để M đạt giá trị nhỏ nhất ,tìm giá trị nhỏ nhất đó
M=x-14/14-x