Những câu hỏi liên quan
KK
Xem chi tiết
SM
12 tháng 10 2020 lúc 21:10

bn ê, tên đăng nhập của bn ghi là vuduyquang2007 có cái số 2007 (năm sinh của bn)

Bình luận (0)
 Khách vãng lai đã xóa
TA
12 tháng 10 2020 lúc 21:11

\(x\left(1+x+x^2\right)=4y\left(y-1\right)\)

\(x.1+x.x+x.x^2=4y.y-4y.1\)

\(x+x^2+x^3=5y-4y\)

\(x+x^2+x^3=y\)

Thấy ngay \(x=0,y=0\)

Bình luận (0)
 Khách vãng lai đã xóa
KK
12 tháng 10 2020 lúc 21:12

Giúp với!

Bình luận (0)
 Khách vãng lai đã xóa
TM
Xem chi tiết
TB
Xem chi tiết
TD
23 tháng 12 2016 lúc 20:34

Mình gợi ý phần đầu nè. Xét \(x=0\) riêng được \(y=0\) hoặc \(y=1\).

Xét \(x\ne0\). Khi đó  \(x\) và \(x^2+x+1\) nguyên tố cùng nhau với mọi \(x\) nguyên khác 0.

(Ở đây ta chỉ định nghĩa 2 số nguyên tố cùng nhau là 2 số có ước chung lớn nhất là 1 nên số âm vẫn được).

Để CM điều này ta gọi \(d=gcd\left(x^2+x+1,x\right)\) thì \(1⋮d\).

Vế trái là một số chia hết cho 4 nên trong 2 số \(x\) và \(x^2+x+1\) phải có một số chia hết cho 4

(Nếu mỗi số đều chia hết cho 2 thì không thể nguyên tố cùng nhau)

Trường hợp 1: \(x⋮4\) còn \(x^2+x+1\) lẻ.

Do \(y\) và \(y-1\) có 1 số chẵn và 1 số lẻ nên số chẵn sẽ là ước của \(x\) còn số lẻ là ước của \(x^2+x+1\).

Tức là có 2 trường hợp: \(x=4y\) và \(x=4\left(y-1\right)\).

Trường hợp 2 ngược lại.

Tới đây bạn tự giải được nha.

Bình luận (0)
KL
23 tháng 12 2016 lúc 12:38

\(x\left[1+x+x^2\right]=4y\left[y-1\right]\)

\(\Leftrightarrow x^3+x^2-4y^2+x+4y=0\)

\(\Leftrightarrow x^2\left[x+1\right]+x-4y^2+4y=0\)

\(\Leftrightarrow\Delta=b^2-4ac=1-16xy+16xy^2-16y+16y^2\)

\(\Rightarrow\orbr{\begin{cases}x1=\frac{-1+\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\\x2=\frac{-1-\sqrt{1-16xy+16xy^2-16y+16y^2}}{2x+2}\end{cases}}\)

đến đây tự làm tiếp nhé

Bình luận (0)
PN
6 tháng 3 2018 lúc 20:20

Có:

                                                      (1)

, nên từ  và  chẵn.

Giả sử   lẻ và  

 là số chính phương,  nên  cũng là hai số chính phương.

Do  

Khi , có .

Vậy có hai cặp số nguyên thỏa mãn yêu cầu bài toán là:

Bình luận (0)
DH
Xem chi tiết
PO
Xem chi tiết
HT
Xem chi tiết
TD
13 tháng 10 2019 lúc 10:35

đkxđ: \(x,y\ne0\)

Khai triển ra ta được\(\frac{x^2}{y}-\frac{x^2}{43}+\frac{y^2}{x}-\frac{y^2}{43}+x+y=0\)


<=> \(\frac{x^2+y^2}{y}+\frac{x^2+y^2}{x}-\frac{x^2+y^2}{43}=0\)

<=>\(\frac{1}{x}+\frac{1}{y}-\frac{1}{43}=0\)

<=> \(\frac{x+y}{xy}=\frac{1}{43}\)

<=>\(43\left(x+y\right)-xy=0\)\(\orbr{\begin{cases}\hept{\begin{cases}43-x=1849\\43-y=1\end{cases}}\\\hept{\begin{cases}43-x=1\\43-y=1849\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x=42\\y=-1806\end{cases}}\\\hept{\begin{cases}x=-1806\\y=42\end{cases}}\end{cases}}\)

<=>\(\left(43-x\right)\left(43-y\right)=1849\)(tự phân tích nhân tử)

  Tự giải phương trình ước số ra nghiệm (x,y)={(42;-1806);(-1806:42)}

Bình luận (0)
MD
Xem chi tiết
H24
Xem chi tiết

2,Giải: 

♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³ 

♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 ) 
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ 

=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 ) 
<=> 2p + 1 = 8k³ + 12k² + 6k + 1 
<=> p = k(4k² + 6k + 3) 

=> p chia hết cho k 
=> k là ước số của số nguyên tố p. 

Do p là số nguyên tố nên k = 1 hoặc k = p 

♫ Khi k = 1 
=> p = (4.1² + 6.1 + 3) = 13 (nhận) 

♫ Khi k = p 
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1 
Do p > 2 => (4p² + 6p + 3) > 2 > 1 
=> không có giá trị p nào thỏa. 

Đáp số : p = 13

Bình luận (0)
NH
Xem chi tiết
NC
30 tháng 8 2019 lúc 19:25

Ta có: 

\(\overline{xxyy}=x.1000+x.100+y.10+y=x.1100+y.11=11\left(x.100+y\right)\)

\(\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}=\overline{x+1}.11.\overline{y+1}.11\)

=> \(\overline{xxyy}=\overline{\left(x+1\right)\left(x+1\right)}.\overline{\left(y+1\right)\left(y+1\right)}\)

\(\Leftrightarrow11\left(x.100+y\right)=\overline{\left(x+1\right)}.11.\overline{\left(y+1\right)}.11\)

\(\Leftrightarrow x.100+y=11.\overline{x+1}.\overline{y+1}\) 

\(\Leftrightarrow\overline{x0y}=11.\overline{x+1}.\overline{y+1}\)(1)

=> \(\overline{x0y}⋮11\)=> \(x-0+y⋮11\Rightarrow x+y⋮11\)=> x+y=11

và \(\overline{x0y}⋮x+1;\overline{x0y}⋮y+1\)

Em thay các giá trị x, y vào thử nhé

Bình luận (0)